Forecast Informed Reservoir Operations
- An Opportunity to Improve the Resiliency of our Water Supply

Western States Water Council
May 29, 2015

Jay Jasperse, Chief Engineer
Sonoma County Water Agency

www.sonomacountywater.org
Russian River System

Dual Purpose Facilities
- Flood Protection (ACOE)
- Water Supply (SCWA)
- Rainfall dominated watershed
- Eel River Diversions
- Highly regulated river system

Lake Sonoma (Warm Springs Dam)
Flood Control Pool: 136,000 AF
Water Supply Pool: 245,000 AF

Lake Mendocino (Coyote Valley Dam)
Flood Control Pool: 48,100 AF
Water Supply Pool: 68,400 AF (Min)
Lake Mendocino Does Not Function As A Reliable Water Supply Facility

Some Reasons For Inadequate Water Supply Reliability:

- Relatively small storage capacity
- Relatively unproductive watershed
- Reduced inflow from Potter Valley Project (Eel River)
- Highly variable precipitation patterns
 - Almost 50% rainfall from atmospheric rivers
- Future growth & climate change will likely further reduce reliability
Who Relies On Water Supply From Lake Mendocino?

Municipal Uses:
- Direct river diversions & groundwater recharged by Russian River
- Sonoma County Water Agency (regional system)

Agriculture Uses:
- Vineyards, orchards, row crops

Environmental & Ecosystem Uses:
- Three ESA-listed salmonid species

Recreation & Tourism Uses:
- Lake Mendocino high use recreation facility
- Tourism associated with Russian River significant to regional economy
Atmospheric Rivers: Our Extreme Weather Events

Composite Dec 11, 2014

Total Precipitable Water (mm)

Source: CIMSS
Atmospheric Rivers Drive Droughts & Floods

Hopland Composite

Large storms account for 84% of the variance of total precipitation

From M. Dettinger
Hydrograph - Russian River at Hacienda Bridge, Guerneville California

Discharge, cubic meters per second

Date

2,500
2,000
1,500
1,000
500
0
ARs & Russian River floods

- **ALL 7 major floods of Russian River since 1997 have been atmospheric rivers** *(Ralph et al., GRL, 2006)*

On a longer time scale, **among all 39 “declared” floods of the Russian River (39 cases with > 50,000 cfs) from 1948-2011... 87% were caused by ARs**

Ralph et al., GRL, 2006
Cumulative Potter Valley Project Diversions

A Declining Trend
Reduced Potter Valley Project Diversions

Average Potter Valley Project Diversions

Lake Mendocino Guide Curve
Lake Mendocino Reliability Study

Modeling Study: 8 Scenarios Evaluated

- Current Water Supply Reliability
 - Current Eel River Diversions
 - No Eel River Diversions
- Projected 2045 Water Demand: High & Low
- Potential Climate Change Impacts: Dry & Wet
Lake Mendocino Minimum Annual Storage Distribution

Scenario #1: Modeled Data (1910 - 2013) with Current Operations of PVP, 2015 Projected Demands, and Modeled Historical Climate
Scenario #2: Modeled Data (1910 - 2013) with No Operations of PVP, 2015 Projected Demands, and Modeled Historical Climate
Scenario #3: Modeled Data (1910 - 2013) with Current Operations of PVP, 2045 Projected Low Demands, and Modeled Historical Climate
Scenario #4: Modeled Data (1910 - 2013) with Current Operations of PVP, 2045 Projected High Demands, and Modeled Historical Climate
Observed Historical Data (1984 - 2006)
Lake Mendocino Minimum Annual Storage Distribution

Scenario #1: Modeled Data (1910 - 2013) with Current Operations of PVP, 2015 Projected Demands, and Modeled Historical Climate
Scenario #4: Modeled Data (1910 - 2013) with Current Operations of PVP, 2045 Projected High Demands, and Modeled Historical Climate
Scenario #5: Modeled Data (2001 - 2099) with Current Operations of PVP, 2045 Projected Low Demands, and Modeled Dry Climate
Scenario #6: Modeled Data (2001 - 2099) with Current Operations of PVP, 2045 Projected High Demands, and Modeled Dry Climate
Scenario #7: Modeled Data (2001 - 2099) with Current Operations of PVP, 2045 Projected Low Demands, and Modeled Wet Climate
Scenario #8: Modeled Data (2001 - 2099) with Current Operations of PVP, 2045 Projected High Demands, and Modeled Wet Climate
Several Initiatives To Improve Water Supply Reliability

- Raise Coyote Valley Dam
- Integrated water management & conservation
- Modification of the hydrologic index
- **Forecast Improved Reservoir Operations (FIRO)**
Lake Mendocino Water Years 2012 - 2014

Can we save some of this water?

Atmospheric River Events

To avoid this
Lake Mendocino FIRO Demonstration Project - A Collaborative Effort

Broad coalition of federal, state, & regional agencies comprised of scientists & water managers

Steering Committee:
Federal: NOAA (OAR, NWS, NMFS), USGS, Army Corps of Engineers, & Bureau of Reclamation
State: California Department of Water Resources & Scripps Center for Western Weather & Water Extremes
Regional: Sonoma County Water Agency

Partnerships: NOAA Habitat Blueprint
Integrated Water Resource Sciences & Services
Possible Operational Improvements: Forecast Informed Operations

Incorporate current forecast skill into operations for periods when no storm events are predicted (near-term)

Reservoir operations consider watershed conditions (near-term)

- SCWA/NOAA/USGS install soil moisture & rain gages above reservoirs
- Develop correlations between rainfall-soil moisture-reservoir inflow

Forecast skill for atmospheric river events (long-term)

- Predict landfall & intensity of storms
- CalWater-2 and other research
Lake Mendocino
FIRO Demonstration Project

Goal of initial phase is to answer the following question:
Is FIRO currently viable as an operational strategy to improve water supply and environmental conditions without impairing flood protection?

If answer is yes, then next step is to answer the following:
What decision support system & tools need to be employed to operationalize FIRO?

If answer is no, then next step is to address the following:
What research needs to be conducted to improve science & technology to meet the needs of water managers?
Viability Evaluation
Is FIRO currently viable strategy to improve water supply and environmental conditions without impairing flood protection?

YES – FIRO is a viable strategy
(Note: some FIRO strategies may be currently viable while others are not)

NO – FIRO is NOT currently a viable strategy to improve reservoir operations

What Improvements in scientific knowledge & decision tools need to occur so that FIRO is viable and can meet the needs of water managers?

Science & Technical Programs
- Data collection & monitoring (watershed, hydrometric)
- Weather Forecasting
 - QPI
 - QPE
 - ARs
- Decision support model
- Data interoperability

How can FIRO become incorporated into reservoir operations?
- Process
- Decision support tools/model
Demonstration Project Status

Complete Work Plan
- Early Summer 2015

In-person Steering Committee Mtg
- July 2015

“Bookend” Model Studies
- Baseline and perfect forecast
- Current condition assessments
- Fall 2015

Preliminary feasibility/viability study
- Winter 2016
Modeling Shows FIRO Potential for Water Supply Benefits
Challenges

Coordination between (and within) multiple agencies

Operationalizing research products & new technology into reservoir management decisions

Who accepts risks? What is tolerable risk?

Take the long-term view but demonstrate short-term improvements

Manage expectations: “No silver bullets”