

Integrated DOE Approach for Resilient Energy-Water Systems of the Future

DOE FY17 Energy-Water Nexus Crosscut

March 21, 2016

Interconnected Energy and Water Systems

- 40% of water withdrawal is for thermoelectric cooling at power plants
- 4% of electricity consumption is for water treatment, distribution, and conveyance (significantly higher in some regions)

Congressional Direction in the Energy-Water Nexus

Energy Policy Act of 2005

The Secretary <u>shall</u> carry out a program of research, development, demonstration, and commercial application to—

- (1) address energy-related issues associated with provision of adequate water supplies, optimal management, and efficient use of water;
- (2) address water-related issues associated with the provision of adequate supplies, optimal management, and efficient use of energy; and
- (3) assess the effectiveness of existing programs within the Department and other Federal agencies to address these energy and water related issues.

GAO Report on the Energy-Water Nexus 2012

"GAO is recommending that DOE <u>take the actions necessary to establish a program to address the energy-water nexus</u>, with involvement from other federal agencies, as described in the Energy Policy Act of 2005."

Bipartisan Congressional Letter 2013

Energy and Water Development Appropriations Bill 2016

"The Committee recognizes there is a clear need to obtain reliable, current, and comprehensive data on energy for water and water-for-energy use ... More accurate data and analysis can improve informed decision making; help prioritize investments in energy-water infrastructure; contribute to the research and development of related technologies; and lead to more efficient and sustainable water and energy practices."

EWN

Energy-Water Nexus: DOE's Role

- DOE can approach the diffuse water area strongly from the energy side
 - Focus on our technical strengths and mission
 - Leverage strategic interagency connections
- We have strong expertise in technology, modeling, analysis, and data and can contribute to understanding the issues and pursuing solutions across the entire nexus.
- Our work has broad and deep implications
 - User-driven analytic tools for national decisionmaking supporting energy resilience with initial focus on the water-energy nexus
 - Solutions through technology RDD&D, policy analysis, and stakeholder engagement

Download the full report at energy.gov

Responding to Challenges in the Energy-Water System

DOE's Programmatic Thrusts for the Energy-Water Nexus

Dry Cooling for Electricity Generation

ARPA-E's Advanced Research in Dry Cooling (ARID) Research Solicitation is funding 14 projects for a total of \$30 million:

- Air-cooling heat exchangers (3 projects)
- Sorption & other supplemental cooling (4 projects)
- Radiative cooling and cool storage (3 projects)
- Flue gas H₂O recovery & cool storage (2 projects)
- Combined ACC & cool storage (2 projects)

Sample Indirect Dry-Cooling System that Satisfies ARID Program Objectives

Low Cost, Low Carbon Desalination Systems RDD&D Hub

New technology platforms can be applied to a variety of water sources (brackish groundwater, seawater, grey water, produced water, etc.) and end uses (power plant cooling, oil and gas extraction, agriculture, etc.).

Energy Resources

Thermal

Solar thermal

Geothermal

Fossil

Waste heat

Desalination Technologies

Thermal Input

- Membrane Distillation
- Forward Osmosis
- Dewvaporation
- Multi-Effect Distillation

RDD&D Opportunities (ex.)

Low-cost / corrosion resistant new materials for pre-treatment and water intake system and effluent management

Intelligent and robust (non-fouling and non-scaling) membranes

Broaden potential energy inputs

Operational models and controls to maximize water productivity (gal/BTU)

Electricity

- PV/CSP
- Wind/water
- Fossil

• Electric Input

- Reverse Osmosis
- Capacitive Deionization
- Nanofiltration

Increase membrane and materials lifetimes, pressure and fouling limitations

Increase limits on TDS input; Systems for high TDS water

Test-bed for minimum viable process to technology scale-up

Alternative pre-treatment combined with other desal. tech. testbeds

EWN

Stresses and potential adaptations are regional and local in scale

U.S. Water Stresses - Present

Example: Growth in Regional **Applications of Desalination**

Groundwater Depletion - Present

Stressors

Responses

Projected Changes in Seasonal Precipitation

Example: Growth in Regional Energy Demands for Inter-Basin Pumping

Groundwater Desalination Facilities

Existing and Proposed Water Supply Projects

	Abbreviation	Project Name
	Cal. Aqu.	California Aqueduct
	CAP	Central Arizona Project
	Carlsbad Desal.	Carlsbad Desalination Plant
	CUP	Central Utah Project
	GDP	Groundwater Development Project
	LPP	Lake Powell Pipeline
	NISP	Northern Integrated Supply Project
۲	RWSP	Regional Watershed Supply Project
	SDS	Southern Delivery System
	SJ-Chama	San Juan-Chama Project
	WG	Windy Gap Firming Project
	Yampa	Yampa Pumpback Project
	YDP	Yuma Desalting Project

Energy Intensity of the West's Water Supplies

FWN

Policy Analysis and Stakeholder Engagement

Policy Analysis

- Multi-scale systems analyses for improved understanding: water and energy flows; energy infrastructure and technology deployment; markets and finance; regulatory landscape
- Future policy scenarios that bridge between energy and water domains
- Region-specific integrated technology, economic, and policy analyses

Outreach & Stakeholder Engagement

- Disseminate and exchange information
- Inform design and effective use of data systems, models, and analysis
- Inform policy analysis and program design
- Develop collaborative domestic and international relationships