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Advances	in	Global	Climate	Model	
Resolu5on:	HiFLOR	



By	the	Numbers	
Low	to	High	Resolu5on	Models		

CM2.1/LOAR	 FLOR	 HiFLOR	
Atmospheric	
Grid	Cell	Size	

200	km	(~160	
miles)	

50	km	(~30	
miles)	

25	km	(~16	
miles)	

Compu5ng	Cost	 1	 20	 120	

Size	of	5	Year	of	
Daily	Data	File	
(ex:	Total	
Precipita5on)	

91	MB	 1.5	GB	 7.1	GB	



The	magnitude	(amount	of	extreme	precipita5on)	improves	with	
resolu5on	

Annual	US	Precipita5on	Extreme	

Source:	Van	der	Wiel	et	al.	2016	

GFDL	Climate	Variations	and	Prediction	Group	Research	Summary	

The resolution dependence of US precipitation extremes  
in response to CO2 forcing 

by Karin van der Wiel, SB Kapnick, GA Vecchi, WF Cooke, TL Delworth, L Jia, H Murakami, S Underwood, F Zeng 

Submitted to Journal of Climate 

Precipitation extremes have a widespread impact on societies and ecosystems worldwide. 
Therefore, understanding current and future patterns of extreme precipitation is central to 
NOAA’s mission and highly relevant to society. 

In this study, three newly developed global coupled climate models have been used to study the 
impact of horizontal atmospheric model resolution (tile size) on precipitation extremes. The 
lowest-resolution model, LOAR, was designed to have a resolution similar to that of many 
models used for climate change projections in the latest IPCC report: 125×125 miles. The 
resolution was then significantly increased in the FLOR model to be 30×30 miles, a resolution at 
which tropical cyclones can develop. Finally, the HiFLOR model further increases the resolution 
to be 16×16 miles. 
 

Fig. 1 – The quality of 

simulated precipitation 

extremes improves with 

increasing atmospheric model 

resolution. Colors show 

observational and model data 

of precipitation intensity 

associated with the annual 

heaviest event. Adapted from 

Van der Wiel et al. (2016). 

 

This study focuses on extreme precipitation events over the contiguous US. It is found that: 
1. The higher-resolution models significantly improve the simulation of mean precipitation, 

the distribution of precipitation, and spatial patterns, intensity and seasonality of 
precipitation extremes. – Fig. 1. 

2. All models show a mean intensification of precipitation extremes, of approximately 3-4 
% K-1, in response to CO2 forcing. However, projected regional patterns of precipitation 
are dependent on model resolution. For example, FLOR and HiFLOR show increased 



The	seasonality	(5ming	of	extreme	precipita5on)	improves	with	
resolu5on	

How	can	we	model	precipita5on	extremes	beGer?	

Source:	Van	der	Wiel	et	al.	2016	



North	American	Monsoon	
Eleva5on	&	JAS	Surge-Related	Precipita5on	(mm/day)	

Source:	Pascale	et	al.	2016	

FIG. 1: Surface elevation (meters) in (a) ERA-I, (b) CM2.1, (c) FLOR and (d) HiFLOR. CM2.5
and CM2.6 have the same surface elevation as FLOR. The dashed rectangular box denotes the
AZWNM area used for area-averaging.
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FIG. 9: Box-and-whisker diagrams (minimum, 25th, 50th, 75th percentile and maximum) of:
(a) mean JAS precipitation and surge-related JAS precipitation over AZWNM; (b) percentage of
JAS AZWNM precipitation due to wet surges; (c) seasonal summertime distribution of AZWNM
precipitation and (d) seasonal summertime distribution of AZWNM surge-related precipitation
for reanalysis and GFDL models (Tab. 1). The grey and gold shading denotes the maximum
(minimum) 75th (25th) percentile between the two reanalyses and it is shown to help compare the
different boxes.
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Snowpack	Climatology	(Average	Spring	Snowpack)	

Source:	Kapnick	et	al.,	in	preparaHon	

Average	Present-Day	Spring	Snowpack	(cm	of	water	equivalent)	



2015/2016	and	the	Importance	of	
Ini5aliza5on	



ENSO	Forecas5ng:	Cane	et	al.	1986	
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Experimental forecasts of EI Nino 
Mark A. Cane, Stephen E. Zebiak & Sean C. Dolan 

Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964, USA 

Experimental forecasts of EI Nino events occurring since 1970, made with a deterministic model of the coupled ocean-
atmosphere system, indicate that EI Nino is generally predictable one or two years ahead. Aforecastfor 1986 is also presented. 

THE devastating climatic events of 1982-83 were the most recent 
extreme phase of the irregular cycle of atmospheric and oceano-
graphic changes known collectively as EI Nino and the Southern 
Oscillation (ENSO)I-5, If forecasts could provide sufficient 
warning of an impending episode, appropriate planning could 
reduce human suffering and economic loss6,7, In 1982 the state 
of information gathering and forecasting activities was clearly 
inadequate: the event was well under way before it was recogn-
ized. Statistical procedures reported more recently8,9 could have 
forecast it in the spring of 1982, a few months in advance of 
the peak warming. 

Forecasts of EI Nino at longer lead times could be impossible 
in principle. Perhaps the intrinsic behaviour of the coupled 
ocean-atmosphere system is such that states which initially differ 
by a small amount diverge very rapidly. If so, it would be 
impossible to observe initial conditions with sufficient precision 
to determine the subsequent evolution over many months. Even 
if skilful forecasts at longer range are possible in principle, they 
may be unattainable in practice because of inadequate models 
or the limitations of available data. 

While it leaves many questions unanswered, the work reported 
here offers grounds for optimism. We have used a deterministic 
numerical model of the coupled ocean and atmosphere in the 
tropical Pacific region to make forecasts of all the EI Nino events 
since 1970. The results indicate that the large-scale warmings 
associated with these events could have been predicted a year 
or more in advance. 

The numerical forecasting model1o,1l is a coupled model for 
the evolution of the ocean and atmosphere in the tropical Pacific 
region. Only deviations from the mean are calculated explicitly; 
mean conditions are specified from monthly climatological data. 
No statistical procedures are used in the forecasts. Model vari-
ables evolve deterministically, according to the physical laws 
governing the atmosphere and oceans. The model was originally 
developed for abstract studies of large-scale ocean-atmosphere 
interactions in the tropics and is far simpler than the numerical 
models used operationally for weather prediction. Nevertheless, 
it reproduces much of the characteristic spatial and temporal 
structure of observed El Nino events, including their recurrence 
at irregular intervals with an average period of 3-4 yr (refs 10, 
11). 

In part, the simplifications were designed to serve a didactic 
purpose: insofar as the model simulations of ENSO are judged 
to be correct, one may conclude that the omitted processes are 
not essential for the existence of the ENSO cycle. When the 
model is to be used for forecasting, however, verisimilitude is 
clearly desirable and the simplifications are a handicap. The 
model's predictive skill is probably decreased by the absence 
of the 30-60-day waves so prevalent in the tropics12

, as well as 
by the lack of any variability generated in mid-latitudes. The 
model exhibits too little variability in the western equatorial 
Pacific and overstates easterly wind anomalies in the east. It 
cannot reproduce episodes of strong cold anomalies. All of these 
flaws (and others) reduce the realism of its ENSO simulations. 

On the basis of model results, we have suggested a theory for 
the ENSO cycle10,11 along lines proposed by Bjerknes l3 almost 
two decades ago. Many investigators since Bjerknes have sub-
stantially advanced our understanding of the tropical atmos-

phere and oceans, allowing his original framework to be bol-
stered and elaborated. Our theory and model design draw on 
this collective progress1,14, only a brief sketch of which is possible 
here. 

Ocean-atmosphere interaction 
Work on equatorial ocean dynamics following the pioneering 
sea-level studies of Wyrtki l5,16 established that changes in the 
eastern equatorial Pacific could be caused by remote wind 
changes to the west, with the signal propagating through the 
ocean along the equatorial wave guide17• Others explored the 
ways in which ocean dynamics13,18-20, not surface heating 
anomalies4,13,21, accounted for observed anomalies in sea surface 
temperature (SST). Experiments with atmospheric general circu-
lation models22-24 showed that tropical Pacific SST anomalies 
could cause the meteorological changes characteristic of ENSO; 
other studies showed that simple models could largely account 
for the tropical aspect of the anomaly pattern4,25-28. 

If the winds alter the SST pattern, which alters the winds, 
then a coupled ocean-atmosphere model is clearly required. 
Although highly idealized, the models described in the 
literature29-33 provide considerable insight into the mechanics 
of growing and oscillating modes of the coupled system. (This 
work has been reviewed by McCreary34). 

In our model, the atmosphere and ocean both have an active 
role in ENSO: it is an oscillation of the coupled system. Its 
consequences are global, but the interactions vital to its existence 
all occur in the tropical Pacific region. 

In the normal state, the tropical Pacific is warmer in the west 
and colder in the east; a centre of tropical rainfall overlies the 
pool of very warm water in the far western Pacific. The easterly 
trade winds blowing towards this atmospheric heating region 
drive warm surface waters to the west, while drawing colder 
sub-surface waters upward at the east. Thus, the temperature 
contrast responsible for the atmospheric circulation is 
maintained by that circulation--a positive feedback. 

If the eastern ocean becomes warmer, then the rainfall spreads 
eastward with the warm water, and the surface winds slacken. 
As a result, some of the warm western water moves eastward 
and less cold water is drawn upwards; hence, the east becomes 
warmer still. Again, there is a positive feedback, leading to more 
westerly winds, warmer SSTs and a deeper thermocline in the 
east. This is an El Nino event. 

Bjerknes13 discussed both of these 'chain reactions' but could 
not explain why there were transitions from one phase to the 
other in an endless cycle. The key idea in our theory requires 
going beyond the vertical plane along the Equator and consider-
ing the north-south circulation in the ocean4,18,29. Approaching 
the peak of an El Nino event, water moves not only from west 
to east, but also poleward35, emptying the reservoir of warm 
water at the Equator. 

In the aftermath of the event, the heat loss results in colder 
than normal eastern Pacific SSTs and, consequently, stronger 
than normal easterlies--an enhanced version of the non-El Nino 
state. The transition back to the El Nino state cannot take place 
until enough warm water flows back from higher latitudes to 
refill the equatorial heat reservoir. Episodes of weak easterlies 
are frequent, but until the reservoir is refilled there is not enough 
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warm water available to sustain the 'chain reaction' that gener-
ates an El Nino event. 

Our focus on the heat content of the equatorial band arose 
from theoretical considerations and numerical model results. 
There is also observational evidence supporting these ideas. On 
the basis of tide gauge data, Wyrtki36 has independently 
advanced a similar hypothesis. 

The time it takes to restore the equatorial heat content depends 
on the strength ofthe coupling between atmosphere and oceanlO• 

The phenomenological 'coupling strength' comprises a number 
of factors, such as the sharpness of the thermocline, advective 
speeds, oceanic temperature gradients, dissipation rates, oceanic 
wave speeds and the sensitivity of the surface wind to SST 
contrasts. All of these vary seasonally and spatially, in addition 
to changing with the state of the ocean-atmosphere system. In 
addition, the flow of warm water back to the Equator is affected 
by higher-frequency events such as the 30-60-day waves 12 in 
the western Pacific. 

The irregularity of the interval between El Nino events reflects 
the variability of this refill time; it is this variability which makes 
the prediction of El Nino difficult. It is not known whether it 
is more a result of high-frequency noise3? or ofthe nonlinearities 
intrinsic to the ENSO cycle38• Although either implies that the 
ENSO cycle cannot be predicted arbitrarily far ahead, neither 
precludes prediction at useful lead times. 

The ENSO scenario outlined here has further implications 
for the prospects offorecasting an El Nino event. As the essential 
interactions take place in the tropical Pacific, data from that 
region alone should be sufficient for forecasting. Also, our model 
implies that the future evolution of the ENSO cycle could not 
be predicted without knowledge of the upper-ocean heat content. 
The radiative relaxation time of the atmosphere is -1 month, 
and the thermal damping time of the ocean surface layer is at 
most a few months (4 months in the model). Evidence that El 
Nino can be predicted at significantly longer lead times implies 
an active role for the sub-surface ocean, which has substantially 
greater thermal inertia. 

In the model, the sub-surface thermal structure reduces to a 
single variable, the anomaly in the heat content of the upper 
ocean, or, equivalently, the thermocline depth anomaly. (A 
recent empirical study highlights the same variable39

.) The analy-
sis above implies that this variable is an essential initial input 
for forecasting. As available observations are insufficient to 
specify a complete field of thermocline depth anomalies, the 
following procedure was adopted. A field of monthly mean 
surface wind stress anomalies was derived from ship observa-
tions over the tropical Pacific40 ; a 1-2-1 filter in time, longitude 
and latitude was then applied to the winds analysed. The 
anomalies used are the deviations from the average of the same 
calendar month over the previous 4 years; for example, the May 
1985 anomaly is the deviation from the mean of May 1982, 1983, 
1984 and 1985. 

The period up to the forecast initial time was simulated by 
forcing the ocean component of the coupled model with wind-
stress anomaly fields specified for each month starting with 
January 1964. The computed SST anomalies were then used to 
run the atmospheric component of the model. The calculated 
anomalies in thermocline depth, currents, SST and surface winds 
were then used as initial conditions for a forecast with the 
coupled model. Note that the initial SST and wind fields are 
calculated to be compatible with the initial thermocline displace-
ments within the model framework; they need not agree with 
observed SST or wind fields. The coupled model runs evolve 
from the initial conditions as in a true forecast model: no new 
data are introduced after the initial time. 

Forecast results 
Figure 1 compares a map of observed SST anomalies during 
the peak period, January 1983, with that from the forecast 
initiated in January 1981. The result is typical of the more 
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Fig. 1 Sea surface temperature (SST) anomalies (OC) in January 
1983. a, Observed, based on the analysis of the Climate Analysis 
Center (CAC) of NOAA. b, Predicted by the model forecast initi-

ated in January 1981, 2 years earlier. 

successful forecasts. As in earlier work lO, including cases with 
the same ocean model driven by observed winds20, the gross 
character of the eastern Pacific El Nino SST anomaly is repro-
duced, although its meridional and westward extent is underesti-
mated. 

Forecasts were initiated in the periods preceding each of the 
El Nino events that have occurred since 1970; that is, the events 
of 1972, 1976 and 1982. An additional set was made for the 
'non-event' of 1979. No forecasts were attempted in the years 
before 1970 because the wind analyses available for these earlier 
years are of distinctly lower quality. In each period there are 
six forecasts spaced 3 months apart, with the sequence ending 
in January of the nominal year. For example, for 1972 forecasts 
were initiated from October 1970, January, April, July and 
October, 1971 and January 1972. 

The forecast results are summarized in terms of the SST 
anomaly averaged over the eastern equatorial Pacific area called 
NIN03 (5° S to 5° N; 90° W to 150° W). The NIN03 index was 
devised by the Climate Analysis Center of NOAA (National 
Oceanic and Atmospheric Administration) because a warming 
in this region strongly influences the global atmosphere2• It is 
probably the best single indicator of an ENSO episode likely 
to affect global climate. 

Figure 2 shows that the model generally succeeds in predicting 
warmings in those years when they were observed to occur, and 

Table 1 Summary of forecast results for past years 

Chance by 
Start month No. right No. of cases coin flips 

l-yr forecasts 
October 7 8 0.04 
January 8 8 0.004 
April 1 4 0.94 
July 4 4 0.06 

Total 20 24 0.0008 
2-yr forecasts 

October 3 4 0.31 
January 3 4 0.31 

Total 6 8 0.14 

Results correspond to the 24 forecasts of Fig. 2. For January, 'l-yr 
forecasts' refers to the same calendar year; for all other start months, 
to the next calendar year. The last column shows the probability of 
correctly predicting at least as many cases as the model did by flipping 
a coin. 
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warm water available to sustain the 'chain reaction' that gener-
ates an El Nino event. 

Our focus on the heat content of the equatorial band arose 
from theoretical considerations and numerical model results. 
There is also observational evidence supporting these ideas. On 
the basis of tide gauge data, Wyrtki36 has independently 
advanced a similar hypothesis. 

The time it takes to restore the equatorial heat content depends 
on the strength ofthe coupling between atmosphere and oceanlO• 

The phenomenological 'coupling strength' comprises a number 
of factors, such as the sharpness of the thermocline, advective 
speeds, oceanic temperature gradients, dissipation rates, oceanic 
wave speeds and the sensitivity of the surface wind to SST 
contrasts. All of these vary seasonally and spatially, in addition 
to changing with the state of the ocean-atmosphere system. In 
addition, the flow of warm water back to the Equator is affected 
by higher-frequency events such as the 30-60-day waves 12 in 
the western Pacific. 

The irregularity of the interval between El Nino events reflects 
the variability of this refill time; it is this variability which makes 
the prediction of El Nino difficult. It is not known whether it 
is more a result of high-frequency noise3? or ofthe nonlinearities 
intrinsic to the ENSO cycle38• Although either implies that the 
ENSO cycle cannot be predicted arbitrarily far ahead, neither 
precludes prediction at useful lead times. 

The ENSO scenario outlined here has further implications 
for the prospects offorecasting an El Nino event. As the essential 
interactions take place in the tropical Pacific, data from that 
region alone should be sufficient for forecasting. Also, our model 
implies that the future evolution of the ENSO cycle could not 
be predicted without knowledge of the upper-ocean heat content. 
The radiative relaxation time of the atmosphere is -1 month, 
and the thermal damping time of the ocean surface layer is at 
most a few months (4 months in the model). Evidence that El 
Nino can be predicted at significantly longer lead times implies 
an active role for the sub-surface ocean, which has substantially 
greater thermal inertia. 

In the model, the sub-surface thermal structure reduces to a 
single variable, the anomaly in the heat content of the upper 
ocean, or, equivalently, the thermocline depth anomaly. (A 
recent empirical study highlights the same variable39

.) The analy-
sis above implies that this variable is an essential initial input 
for forecasting. As available observations are insufficient to 
specify a complete field of thermocline depth anomalies, the 
following procedure was adopted. A field of monthly mean 
surface wind stress anomalies was derived from ship observa-
tions over the tropical Pacific40 ; a 1-2-1 filter in time, longitude 
and latitude was then applied to the winds analysed. The 
anomalies used are the deviations from the average of the same 
calendar month over the previous 4 years; for example, the May 
1985 anomaly is the deviation from the mean of May 1982, 1983, 
1984 and 1985. 

The period up to the forecast initial time was simulated by 
forcing the ocean component of the coupled model with wind-
stress anomaly fields specified for each month starting with 
January 1964. The computed SST anomalies were then used to 
run the atmospheric component of the model. The calculated 
anomalies in thermocline depth, currents, SST and surface winds 
were then used as initial conditions for a forecast with the 
coupled model. Note that the initial SST and wind fields are 
calculated to be compatible with the initial thermocline displace-
ments within the model framework; they need not agree with 
observed SST or wind fields. The coupled model runs evolve 
from the initial conditions as in a true forecast model: no new 
data are introduced after the initial time. 

Forecast results 
Figure 1 compares a map of observed SST anomalies during 
the peak period, January 1983, with that from the forecast 
initiated in January 1981. The result is typical of the more 
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Fig. 1 Sea surface temperature (SST) anomalies (OC) in January 
1983. a, Observed, based on the analysis of the Climate Analysis 
Center (CAC) of NOAA. b, Predicted by the model forecast initi-

ated in January 1981, 2 years earlier. 

successful forecasts. As in earlier work lO, including cases with 
the same ocean model driven by observed winds20, the gross 
character of the eastern Pacific El Nino SST anomaly is repro-
duced, although its meridional and westward extent is underesti-
mated. 

Forecasts were initiated in the periods preceding each of the 
El Nino events that have occurred since 1970; that is, the events 
of 1972, 1976 and 1982. An additional set was made for the 
'non-event' of 1979. No forecasts were attempted in the years 
before 1970 because the wind analyses available for these earlier 
years are of distinctly lower quality. In each period there are 
six forecasts spaced 3 months apart, with the sequence ending 
in January of the nominal year. For example, for 1972 forecasts 
were initiated from October 1970, January, April, July and 
October, 1971 and January 1972. 

The forecast results are summarized in terms of the SST 
anomaly averaged over the eastern equatorial Pacific area called 
NIN03 (5° S to 5° N; 90° W to 150° W). The NIN03 index was 
devised by the Climate Analysis Center of NOAA (National 
Oceanic and Atmospheric Administration) because a warming 
in this region strongly influences the global atmosphere2• It is 
probably the best single indicator of an ENSO episode likely 
to affect global climate. 

Figure 2 shows that the model generally succeeds in predicting 
warmings in those years when they were observed to occur, and 

Table 1 Summary of forecast results for past years 

Chance by 
Start month No. right No. of cases coin flips 

l-yr forecasts 
October 7 8 0.04 
January 8 8 0.004 
April 1 4 0.94 
July 4 4 0.06 

Total 20 24 0.0008 
2-yr forecasts 

October 3 4 0.31 
January 3 4 0.31 

Total 6 8 0.14 

Results correspond to the 24 forecasts of Fig. 2. For January, 'l-yr 
forecasts' refers to the same calendar year; for all other start months, 
to the next calendar year. The last column shows the probability of 
correctly predicting at least as many cases as the model did by flipping 
a coin. 

Observed	SST	Anomalies	January	1983	 Model	Forecast	Ini5alized	January	1981	



El	Niño	Record	

•  Strongest	El	Niños	in	’82-83,	’97-98,	’15-16	
•  If	a	strong	El	Niño	alone	could	predict	regional	
precipita5on,	’97-98	should	have	given	forecast	guidance	



Why	the	2015-16	Winter	Predic5ons	Failed	

Will	be	released	later	in	2016	

Source:	Yang	et	al.,	SubmiTed	



Seasonal	(MAM)	Temperature	Predic5on	
The	Role	of	the	Stratosphere		
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Non-Uniform	Grids	



Other	Non-Uniform	Grids:	Stretching	

•  Smoothly-varying	resolu5on	between	the	enhanced-	and	
degraded-resolu5on	regions	

•  This	configura5on	has	been	used	to	explore	tornado-producing	
supercell	predic5ons	(500m)	

Source:	Described	in	Harris	et	al.	2016	



Other	Non-Uniform	Grids:	2-Way	Nes5ng	
Sample	improvements:	orographic	precip,	hurricane	intensity,	large-scale	climate	stats	

10	km	over	North	America	in	Harris	et	al.	2016;	25	km	in	Harris	et	al.	2014	



Sta5s5cal	Forecast	Guidance	

Special	recogni5on	to	Stephen	Baxter	(CPC)	and	especially	to	Dan	Harnos	
(CPC)	for	providing	forecast	performance	data	
	



Scien5sts	at	GFDL	are	developing	new	S2S	sta5s5cal	
forecast	guidance	for	opera5onal	products	

•  Collabora5on	with	NOAA	CPC	to	bridge	the	forecast	gap	in	weeks	3-4	
•  Sta5s5cal	forecast	model	based	on:	ENSO,	the	MJO,	and	linear	trend	
•  Forecast	guidance	transi5oned	into	implementa5on	of	Experimental	

Week	3-4	Outlooks	–	awai5ng	transi5on	to	official	opera5ons	



Example	u5liza5on	of	sta5s5cal	forecast	guidance	



The	sta5s5cal	forecast	guidance	been	successful	over	CONUS	but	
success	greater	for	temperature	than	for	precipita5on.	

Mean	HSS	

•  HSS	>	0:	skill	rela5ve	to	a	
random	forecast	

•  Blue	and	red	lines:	two	
different	versions	of	the	
sta5s5cal	model	

•  Precipita5on	phase	model	
has	outperformed	the	
ECMWF	(mean	HSS	=	2.9)	
and	JMA	(-0.7)	but	not	the	
CFSv2	(11.0)	dynamical	
forecast	models	



However,	both	sta5s5cal	and	dynamical	forecast	models	have	
performed	poorly	in	the	southwestern	U.S.	

Mean	Weeks	3-4	HSS	for	precipita5on	
phase	model	since	9/18/15	

Sta5s5cal	guidance	 Dynamical	guidance	

CFSv2	

ECMWF	



GFDL	scien5sts	have	been	inves5ga5ng	varia5ons	in	the	S2S	
precipita5on	response	to	El	Niño.	

Convec5ve	(EPC)	and	non-convec5ve	eastern	Pacific	(EPN)	events	(Johnson	and	Kosaka	2016)		

Lag	+10	days	

EPC	 EPN	
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Dynamical	Models	for	Data	Assimila5on	to	Climate	Scales	

Source:	Tommasi	et	al.,	in	preparaHon	
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GFDL	Coupled	CM2X	Models	

Source:	Pascale	et	al.	2016	

TABLE 1: Summary of the six GFDL models used in this study. Values reported for atmosphere
and ocean horizontal resolution are approximate (more details in the references).

Model Atmosphere resolution
(horizontal/vertical)

Ocean resolution
(horizontal/vertical)

General reference

CM2.1 2� ⇥2�(lat⇥lon)/L24 1� ⇥1� / L50 Delworth et al. (2006)

FLOR 1� ⇥1� / L32 1� ⇥1� / L50 Vecchi et al. (2014)

FLOR-FA 1� ⇥1� / L32 1� ⇥1� / L50 Vecchi et al. (2014)

HiFLOR 0.25� ⇥0.25� / L32 1� ⇥1� / L50 Murakami et al. (2015)

CM2.5 1� ⇥1� / L32 0.25� ⇥0.25� / L50 Delworth et al. (2012)

CM2.6 1� ⇥1� / L32 0.1� ⇥0.1� / L50 Delworth et al. (2012)
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North	American	Monsoon	

Source:	Pascale	et	al.	2016	
FIG. 10: Box-and-whisker diagrams (minimum, 25th, 50th, 75th percentile and maximum) of:
(a) mean number of total and wet surges; (b) percentage of wet surges; (c) JAS number of surges
and (d) JAS number of wet surges for reanalysis and GFDL models (Tab. 1). The grey and gold
shading denotes the maximum (minimum) 75th (25th) percentile between the two reanalyses and
it is shown to help compare the different boxes.
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