

Advances in Global Climate Model Resolution: HiFLOR

By the Numbers

Low to High Resolution Models

		CM2.1/LOAR	FLOR	HiFLOR
	Atmospheric Grid Cell Size	200 km (~160 miles)	50 km (~30 miles)	25 km (~16 miles)
	Computing Cost	1	20	120
	Size of 5 Year of Daily Data File (ex: Total Precipitation)	91 MB	1.5 GB	7.1 GB

Annual US Precipitation Extreme

Source: Van der Wiel et al. 2016

How can we model precipitation extremes better?

The seasonality (timing of extreme precipitation) improves with resolution

Source: Van der Wiel et al. 2016

North American Monsoon Elevation & JAS Surge-Related Precipitation (mm/day)

Elevation Resolution Dependency

Snowpack Climatology (Average Spring Snowpack)

Source: Kapnick et al., in preparation

2015/2016 and the Importance of Initialization

ENSO Forecasting: Cane et al. 1986

NATURE VOL. 321 26 JUNE 1986

ARTICLES

827

Experimental forecasts of El Niño

Mark A. Cane, Stephen E. Zebiak & Sean C. Dolan

Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964, USA

Experimental forecasts of El Niño events occurring since 1970, made with a deterministic model of the coupled oceanatmosphere system, indicate that El Niño is generally predictable one or two years ahead. A forecast for 1986 is also presented.

Observed SST Anomalies January 1983

Model Forecast Initialized January 1981

El Niño Record

- Strongest El Niños in '82-83, '97-98, '15-16
- If a strong El Niño alone could predict regional precipitation, '97-98 should have given forecast guidance

Why the 2015-16 Winter Predictions Failed

Will be released later in 2016

Source: Yang et al., Submitted

Seasonal (MAM) Temperature Prediction The Role of the Stratosphere

Non-Uniform Grids

Other Non-Uniform Grids: Stretching

- Smoothly-varying resolution between the enhanced- and degraded-resolution regions
- This configuration has been used to explore tornado-producing supercell predictions (500m)

Source: Described in Harris et al. 2016

Other Non-Uniform Grids: 2-Way Nesting

Sample improvements: orographic precip, hurricane intensity, large-scale climate stats

10 km over North America in Harris et al. 2016; 25 km in Harris et al. 2014

Special recognition to Stephen Baxter (CPC) and especially to Dan Harnos (CPC) for providing forecast performance data

Statistical Forecast Guidance

Scientists at GFDL are developing new S2S statistical forecast guidance for operational products

- Collaboration with NOAA CPC to bridge the forecast gap in weeks 3-4
- Statistical forecast model based on: ENSO, the MJO, and linear trend
- Forecast guidance transitioned into implementation of Experimental
 Week 3-4 Outlooks awaiting transition to official operations

Example utilization of statistical forecast guidance

Statistical guidance emphasizing the subseasonal ENSO footprint was strongly utilized. This guidance, along with the dynamical consensus leads to a more confident precipitation outlook relative to temperature. Above-median precipitation is favored

The statistical forecast guidance been successful over CONUS but success greater for temperature than for precipitation.

- HSS > 0: skill relative to a random forecast
- Blue and red lines: two different versions of the statistical model
- Precipitation phase model has outperformed the ECMWF (mean HSS = 2.9) and JMA (-0.7) but not the CFSv2 (11.0) dynamical forecast models

However, both statistical and dynamical forecast models have performed poorly in the southwestern U.S.

Statistical guidance

Mean Weeks 3-4 HSS for precipitation phase model since 9/18/15

Dynamical guidance

GFDL scientists have been investigating variations in the S2S precipitation response to El Niño.

Convective (EPC) and non-convective eastern Pacific (EPN) events (Johnson and Kosaka 2016)

SUMMARY

Dynamical Models for Data Assimilation to Climate Scales

Selected Team members of presented research

GFDL

- TL Delworth
- R Gudgel
- L Harris
- SB Kapnick
- SJ Lin
- C Stock
- S Underwood
- GA Vecchi
- F Zeng

Princeton U.

- S Fueglistaler
- L Jia
- N Johnson
- P Lin
- H Murakami
- D Tommasi
- K van der Wiel

UCAR (at GFDL)

- WF Cooke
- X Yang

Various

- S Bordoni and S Pascale (Caltech)
- CY Tu (Academia Sinica)
- Adam Schaife (Met Office)
- Participants
 (Fisheries Prediction
 Workshop)

Referenced GFDL Research

- Harris, L.M., Lin, S.-J., and Tu., C.Y., 2016: High-Resolution Climate Simulations Using GFDL HiRAM with a Stretched Global Grid. Journal of Climate, 29, DOI:10.1175/JCLI-D-15-0389.1.
- Harris, L.M. and S.-J. Lin, 2014: Global-to-regional nested-grid climate simulations in the GFDL High Resolution Atmosphere Model. Journal of Climate, 27(13), DOI:10.1175/JCLI-D-13-00596.1.
- Jia, L., Yang ,X., Vecchi, G., Gudgel, R., Delworth, T., Fueglistaler, S., Lin, P., Scaife, A., Underwood, S., and Lin, S.J., 2016: Seasonal Prediction Skill of Northern Extratropical Surface Temperature Driven by the Stratosphere. Submitted.
- Johnson, N., and Y. Kosaka, 2016: The role of eastern equatorial Pacific convection on the diversity of boreal winter El Niño teleconnection patterns. In Press at Climate Dynamics. DOI:10.1007/ s00382-016-3039-1.
- Kapnick, S., and Coauthors, 201X: Prediction of US Snowpack. In Preparation.
- Pascale, S., Bordoni, S., Kapnick, S., Vecchi, G., Jia, L., Delworth, T., Underwood, S., Anderson, W.,
 2016: The impact of horizontal resolution on North American monsoon Gulf of California moisture surges in a suite of coupled global climate models. In Press at Journal of Climate
- Tommasi, D., and Coauthors, 201X, Managing living marine resources in a dynamic environment: the role of seasonal to decadal climate forecasts. In Preparation.
- van der Wiel, K., Kapnick, S., Vecchi, G., Cooke, W., Delworth, T., Jia, L., Murakami, H., Underwood, S., and Zeng, F., 2016: The resolution dependence of US precipitation extremes in response to CO2 forcing. In Press at Journal of Climate.
- Yang, X., Vecchi, G.A., Jia, L., Kapnick, S., Delworth, T.L., Gudgel, R., Underwood, S., 2016: On the flipping of the western United States 2015/2016 winter El Niño precipitation pattern. Submitted.

EXTRAS

GFDL Coupled CM2X Models

Model	Atmosphere resolution (horizontal/vertical)	Ocean resolution (horizontal/vertical)	General reference
CM2.1	$2^{\circ} \times 2^{\circ} (\text{lat} \times \text{lon}) / \text{L}24$	$1^{\circ} \times 1^{\circ}$ / L50	Delworth et al. (2006)
FLOR	$1^{\circ} \times 1^{\circ}$ / L32	$1^{\circ} \times 1^{\circ}$ / L50	Vecchi et al. (2014)
FLOR-FA	$1^{\circ} \times 1^{\circ}$ / L32	$1^{\circ} \times 1^{\circ}$ / L50	Vecchi et al. (2014)
HiFLOR	$0.25^{\circ} \times 0.25^{\circ}$ / L32	$1^{\circ} \times 1^{\circ}$ / L50	Murakami et al. (2015)
CM2.5	$1^{\circ} \times 1^{\circ}$ / L32	$0.25^{\circ} \times 0.25^{\circ}$ / L50	Delworth et al. (2012)
CM2.6	$1^{\circ} \times 1^{\circ}$ / L32	$0.1^{\circ} \times 0.1^{\circ}$ / L50	Delworth et al. (2012)

Source: Pascale et al. 2016

North American Monsoon

Source: Pascale et al. 2016