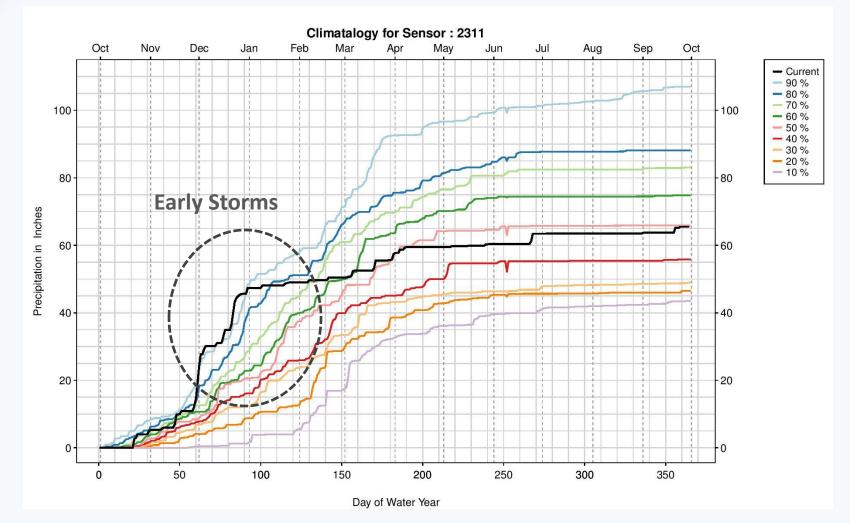
Statistical Analysis of Hydrology in California under Climate Variability

WSWC S2S Workshop, San Diego, June 9th 2016

Michael Anderson Michael.L.Anderson@water.ca.gov

Kwabena O. Asante kasante@geiconsultants.com



Outline

- Motivation: Forecasting Challenges
- California Storm Characteristics Database
- Analysis of Storms and Climate Variability
- Integration with CHRS Storm Database
- Other Statistical Climatology Applications

Sensor View of Seasonal Precipitation

WY 2013: Very high early season precipitation, only minor events after Jan 1st

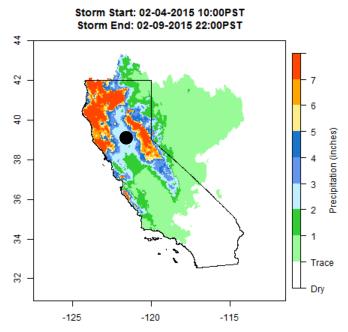
Migrating to a Storm View of Precipitation

Storm End: 02-09-2015 22:00PST 44 42 7 6 40 5 Precipitation (inches) 38 3 38 2 - 1 34 Trace 33 Dry -125 -120 -115

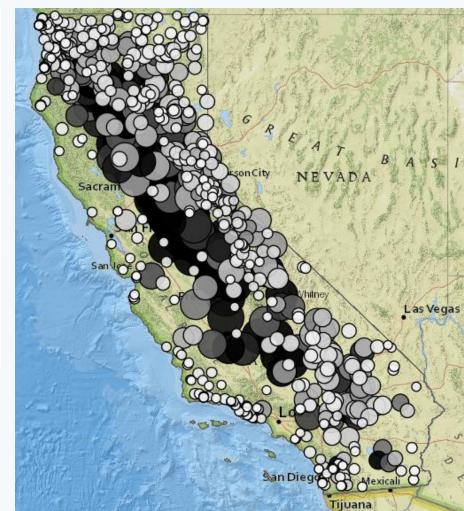
Storm Start: 02-04-2015 10:00PST

Storm Detail

Storm ID 2015020410 Average Depth 3.16 inches Long Mass Center -121.886 Length Wet Coast 685 miles Madden Julian Oscillation Weakly Suppressed


Area

73,076,100 acres Long Max Depth -124.150 Long Area Center -120.784 Time Between Storms 222 hours Pacific Decadal Oscillation Positive Start Date 2015-02-04 Max Depth 19.29 inches Lat Mass Center 39.507 Max Storm Elevation 473.0 meters El Nino Southern Oscillation El Nino


Volume

19,260,081 acre-feet Lat Max Depth 40.225 Lat Area Center 38.282 Storm Duration 132 hours Oceanic Nino Index Neutral

Assembling the Storms Characteristics Database

- Over 700 storms from 2004 to present
- Derived from 6-hourly NOAA CNRFC QPE grids

Climate Phases from ONI, PDO and MJO Indices

	Definition	Time in Phase (%)
ONI Cold	ONI < -0.5 for at least 5 months	21%
ONI Neutral	Neither Warm nor Cold phase	62%
ONI Warm	ONI > 0.5 for at least 5 months	17%
Negative PDO	5-year moving average PDO < 0	78%
Positive PDO	5-year moving average of PDO > 0	22%
Strongly Suppressed MJO	MJO at 120°W between -3 to -1.5	4%
Weakly Suppressed MJO	MJO at 120°W between -1.5 to 0	41%
Weakly Enhanced MJO	MJO at 120°W between 0 to 1.5	46%
Strongly Enhanced MJO	MJO at 120°W between 1.5 to 3	9%

ONI=Oceanic Nino Index PDO=Pacific Decadal Oscillation MJO=Madden Julian Oscillation

Statewide Storm Characteristics by ONI Phase

	Cold	Neutral	Warm
Annualized Storm Count	77	92	73
Storm Area (million acres)	6.7	3.8	9.7
Precipitation Volume (thousand acre-feet)	27	14	48
Average Precipitation Depth (in)	0.05	0.04	0.06
Peak Precipitation Depth (in)	0.40	0.28	0.36
Mean Storm Event Date	Jan	Apr	Dec
Calendar Month with Most Storms	Nov	May	Oct
Time Between Storms (hr)	24	24	24
Mean Storm Event Duration (hr)	18	12	18

Statewide Storm Characteristics by PDO Phase

	Negative	Positive
Annualized Storm Count	90	73
Storm Area (million acres)	4.5	4.5
Precipitation Volume (thousand acre-feet)	18	16
Average Precipitation Depth (in)	0.05	0.05
Peak Precipitation Depth (in)	0.31	0.34
Mean Storm Event Date	Mar	Feb
Calendar Month with Most Storms	Oct	Oct
Time Between Storms (hr)	24	24
Mean Storm Event Duration (hr)	12	12

Statewide Storm Characteristics by MJO Phase

	Strongly Suppressed	Weakly Suppressed	Weakly Enhanced	Strongly Enhanced
Annualized Storm Count	89	91	82	90
Storm Area (million acres)	22.0	2.9	4.9	5.0
Precipitation Volume (1000 acre-ft)	250	11	24	15
Average Precipitation Depth (in)	0.14	0.04	0.05	0.04
Peak Precipitation Depth (in)	1.17	0.27	0.34	0.28
Mean Storm Event Date	Mar	Mar	Mar	Jan
Calendar Month with Most Storms	Apr	Feb	Dec	Oct
Time Between Storms (hr)	24	24	24	30
Mean Storm Event Duration (hr)	30	12	12	12

Analyzing Characteristics by Drainage Region

Drainage Region	Storms (%)	
Central Coast (CC)	40%	
Colorado River (CR)	34%	NORTH COAST SACRAMENTO
North Coast (NC)	74%	RIVER G R E A T
North Lahontan (NL)	55%	CarsonCity NEVADA
Sacramento River (SR)	58%	ERANCISCO BAY JOAQUIN RIVER
San Francisco Bay (SF)	32%	Las
San Joaquin River (SJ)	46%	TULARE LAKE SOUTH LAHONTAN
South Coast (SC)	44%	CENTRAL COAST
South Lahontan (SL)	46%	SOUTH COLORADO RIVER
Tulare Lake (TL)	39%	San Diego Tijuana

Drainage Region Patterns: Peak Storm Frequency

	СС	CR	NC	NL	SR	SF	SJ	SC	SL	TL	All
ONI Cold (La Niña)	Dec	Feb	Nov	Apr	Apr	Nov	Oct	Nov	Nov	Nov	Nov
ONI Neutral	Mar	Aug	May	May	May	Mar	May	Apr	May	May	May
ONI Warm (El Niño)	Nov	Dec	Oct	Oct	Oct	Nov	Nov	Dec	Nov	Jan	Oct
Negative PDO	Apr	Aug	Oct	May	May	Mar	May	Apr	Mar	May	Oct
Positive PDO	Feb	Feb	Nov	Jan	Jan	Jan	Jan	Feb	Jan	Jan	Oct
Strongly Suppressed MJO	Feb	Apr	Apr	Apr	Apr	Feb	Apr	Apr	Apr	Apr	Apr
Weakly Suppressed MJO	Apr	Aug	Oct	May	May	Feb	Mar	Feb	Aug	Aug	Oct
Weakly Enhanced MJO	Dec	Dec	Nov	Dec							
Strongly Enhanced MJO	Feb	Dec	Oct	Feb	Feb	Nov	Oct	Oct	Oct	Oct	Oct

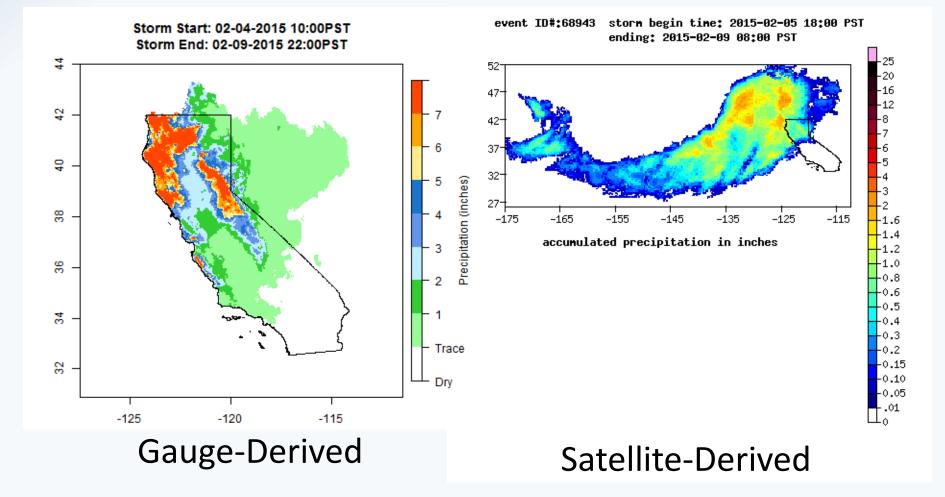
Peaks Earlier Than Statewide

Peaks Later Than Statewide

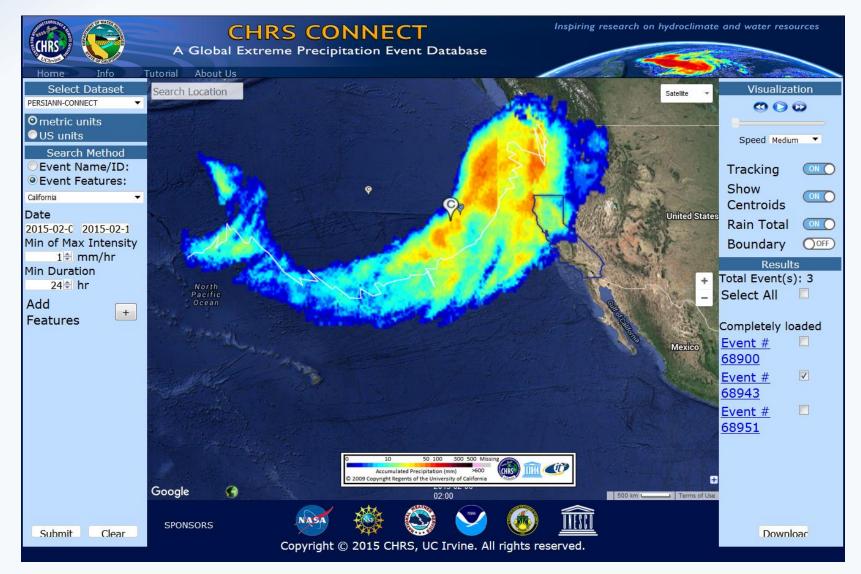
Storm Characteristics Database on FERIX

PA			rtment of DD EMER				E INF	ORMATI	ON EXC	HANGE	(FERI	X) - St	orm Charac	teristics	DWR Sites Hel
C.GO	V									CLIMATE					🗿 DWR 🔘 C
STATIONS N	MAP						- <	i INFO	SELE				🖪 BOOKMARK	I 📓 BASE	MAP 📚 LAYER
Search for			enter a	address her	e		SEARCH	No.	and the	2	Sha	0000	9-90	1 - Martin Providence	Set Site to the to be
STORM CH	ARACTERI	STICS					e	1440		à		3680	200		A. 内容的"学生"
Date:			E	a to		19	-	⊕		X		PB4	28	1 48 17 8	1 Lotter
1020-001	lepth (inches):			to				me		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9	205	00		24.11
						-		+	THE REAL	0	The second	100%	680	1	Partition and an
	je Depth (inc			to				- 1	2	W. E	or	09	e c	RET	Charly Middle
Storm	Area (acres):			to				Ξ		575	0 0	6	CO CON	A	Formation
Storm	Volume (acre	≘-ft):		to				÷					DesonC	ity NEV	ADA AS
Storm	Duration (ho	urs):		to				iQ		1 3	$\langle \rangle$	0			
	ogical Regio	-				~		Q		6120	0	90	- 0 QQ	7	
	3							4	4	the the	FI	BAYO		2	ALTURIT
	SHOW	×)	CL	EAR			≡	Q	2. 2		Dec.			Ro	し、人が多いた意味
							_	6			J. L. Com	°q	5 9 00	20	· · · · · · · · · · · · · · · · · · ·
Click on a	row to vie	w storm	on map.							" di	5	0	0	0	Las Ver
Storm ID	Start Date	Area (acres)	Volume (acre-feet)	Average Depth (inches)	Max Depth (inches)	Long Max Depth						P			
2015022404	2015-02-24	85,500	119	0.02	0.03 -	118.693				4			600	10 th	
2015022122	2015-02-21	56,644,500	1,803,423	0.38	2.65 -	118.513		the set of the set				1	200	~~~~	200
2015022022	2015-02-20	143,000	183	0.02	0.03 -	122.978				1 1		1.11 2	100000		2200
2015021904	2015-02-19	124,200	157	0.02	0.03 -	120.677		- Tellow	1			1 1	- CO		OLORADO
2015020410	2015-02-04	73,076,100	19,260,081	3.16	19.29 -	124.150		Segura .	a ferra	to a star	a fait a sh	144 M	1 To a low	ods (RIVER
2015020116	2015-02-01	23,809,100	1,668,587	0.84	6.28 -	123.880		2 Och F				La ser		00	6° 00
2015013110	2015-01-31	582,800	1,720	0.04	0.23 -	116.573		HERBERT W.		11000	17- 1	11	A State of	San Diego	80-08
2015012916	2015-01-29	28,765,100	244,785	0.1	0.66 -	117.656	2	_				1.1.1.1.1		1 41	
2015012604	2015-01-26	57,924,800	801,053	0.17	0.89 -	117.926		and the second second	i0 100mi	Cur	rrent loc	of: Identify	Active Layer:	Lat/Long:32	2.642439, -119.676

Storm Characteristics by Drainage Region


Storm Climatology Summary

Climate State ▼	Number of Storms	Annualized Storm Count	Percent Time in Climate State (%)	Median	Median Volume (acre-feet)	Median Avg Depth (inches)	Median Max Depth (inches)	Median Long Max Depth
ONI Cold	174	77.3	20	6,065,900	24,294	0.01	0.40	-123.699
ONI Neutral	673	93.9	64	2,988,500	10,189	0.00	0.30	-121.534
ONI Warm	133	72.7	16	6,289,600	23,863	0.01	0.36	-123.609


Individual Storms

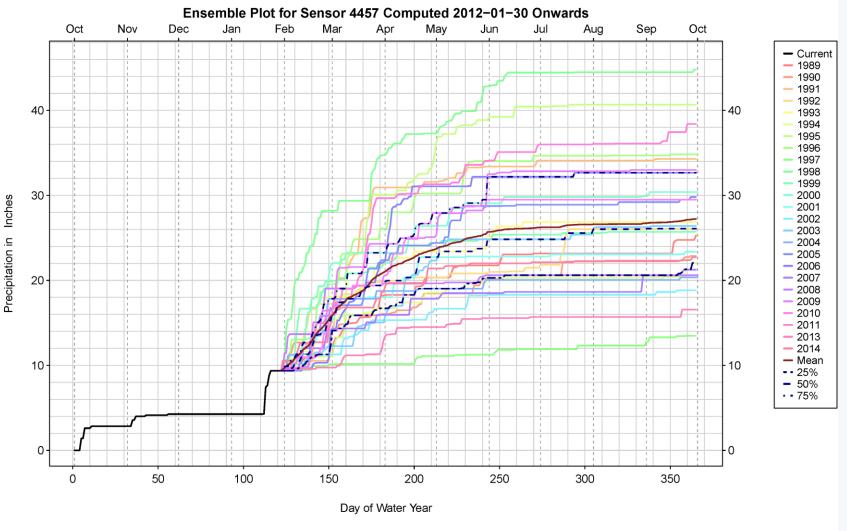
Storm ID	Start Date ▲	Drainage Region	Area (acres)	Volume (acre-feet)	Average Depth (inches)	Max Depth (inches)	Long Max Depth	Lat Max Depth	Long Mass Center
2015022022	2015-02-20	North Coast	104,100	0	0	0.03	-122.932	38.303	-122.923
2015020410	2015-02-04	North Coast	12,144,100	7,165,000	7.08	19.29	-124.150	40.225	-123.289
2015020116	2015-02-01	North Coast	10,311,100	1,196,000	1.39	6.28	-123.880	41.578	-123.334

Expanded View of The Storm Event

UC-Irvine CHRS Connect Storm Database

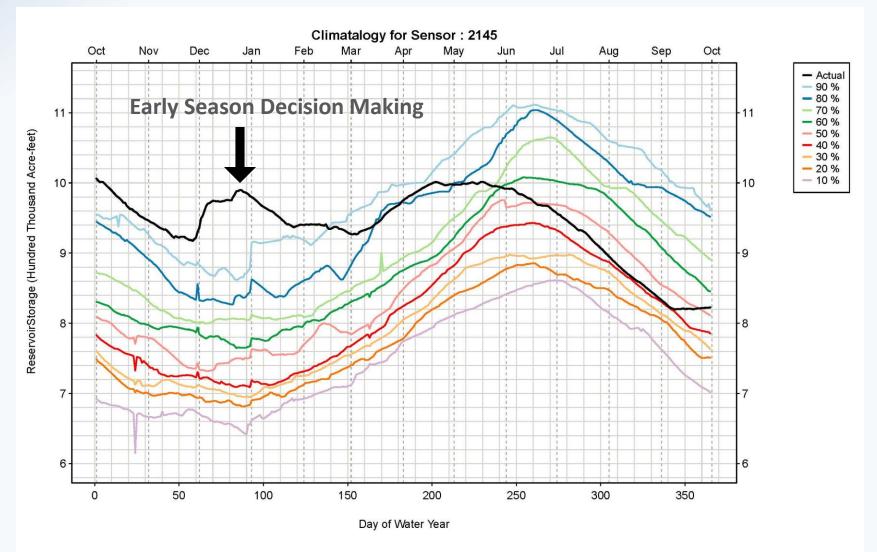
UC-Irvine CHRS Connect Storm Database

- **Source**: Extracted from PERSIANN, a satellite-derived precipitation dataset
- Spatial Coverage: global
- **Temporal Coverage**: 2000 to 2015; periodically updated
- Attributes: 55 fields including 15 storm characteristics and 40 weather/climate indices
- Dataset of 673 storms impacting California has been extracted and transferred to DWR

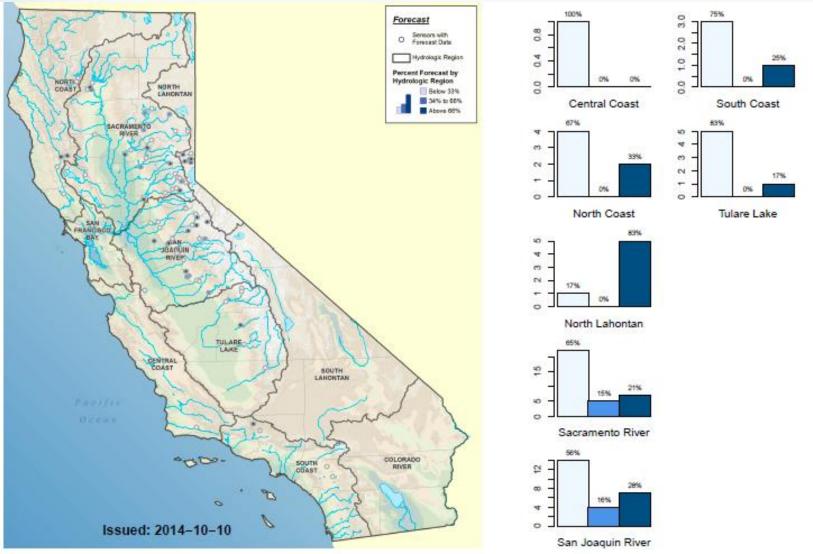

CHRS Connect Storm Database on DWR FERIX

	N	4	Departme						PMATIC		CHANGE			De			
L	.G	OV	HOME REA											10			
ST		NS MAP			IIIDROL			<	i INFO		CENVIATE			🖪 воокма			12
									1 INFO	JELE	.ci -@ GK	APHICS /	TOOLS	67861			
_	rch for			enter addre	ess here	_	SEAR(CH				68	402 6836	2 654264	678		21
CH	IRS							Θ				(6789565	68/11	703		
Γ	SEA	RCH STORMS							⊕5832	3 6	8404 (68 68 68			2 No 226 7014	th Am	erica
	✓ St	art Date:	10/01/2014	🗈 t	09/30/20	15	0		+	60205	9	Pa			<i>v</i> 0	283	19 4
	St	orm Volume (km3)):	t	0				-	69393	5 	00	ean		43	0	69954
	🗸 St	orm Duration (hou	urs):	t	0				∰		e	574348428	69289	68	68 89 34 267	17-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	V Ma	ax Intensity (mm/r	hr):	t	0				iQ I	Storm De	tail	00	\square			and the second second	
	V ID	S (comma separated	i):						Q	NP	Average	Duration	Max	Median	Speed	STDDEV	
		SHOW		CLEAR						1,015.87		90 hours	Intensity 23.092 mm/h	Intensity 2.289 mm/hr		Intensity Vhr 2.627 mm/hr	2
		SHOW		CLEAF				Ξ	Q	Time of Year	Volume	ONI	PAC Warm	PDO	PNA	QBO	
									Q	4	76.065 km3	0.68	0	1.44	-0.39	-24.38	
C	lick o	on a row to vie	w storm on ma	ap. Exp	ort					SOI	Solar Flux	SW Monsoon	TNA	TNI	TSA	WHWP	
\$	itorm ID	Start Date	End Date 🔺	Latitude	Longitude	Start Lat	Star Long			-0.1 WP 1.23	1,290	0	-0.24	-1.434	0.36	2.3	
7	70651	2015-06-19 03:00	2015-07-01 14:00	-8.858	-149.955	3.625	-192.3										Ξ
1	70380	2015-05-25 18:00	2015-05-27 07:00	45.961	-114.563	42.125	-116.8 🗏		A Star		event ID#:6		n begin tin ng: 2015-04			PST	
1	70324	2015-05-21 14:00	2015-05-23 15:00	40.232	-106.155	33.042	-110.7		A WAY			enuti	ng: 2013-04	-20 20:00 1	31		
1	70283	2015-05-18 15:00	2015-05-20 17:00	38.058	-103.203	39.75	-113.6			48	8-	~ .]				-25	
1	70143	2015-05-07 17:00	2015-05-09 05:00	39.799	-115.921	38.253	-120.1		1 hours	43	3-	No and	<u>-</u>			-16	
(69954	2015-04-25 11:00	2015-04-29 04:00	32.974	-92.317	35.708	-117.4		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1					-12	1
	69938	2015-04-24 11:00	2015-04-25 13:00	41.308	-130.597	44.42	-145.2		1. 1. 1.	38	° \ 🎽	100		-		-7	255
	69652	2015-04-06 14:00	2015-04-07 15:00	41.099	-124.209	40.061	-127.3		A Set	33	الم <u>جني</u> -3	3			-	► 6	
	59393	2015-03-18 19:00		33.958	-176.609	25.208	-203.3		1834	28	-			and the second		-4	
	69357	2015-03-15 19:00	2015-03-21 11:00	44.445	-138.631	30.44	-170.1	÷	0	20						-3	_0:
	69289	2015-03-09 21:00	2015-03-18 11:00	25.818	-140.263	7.394	-144.5			2	3-6						

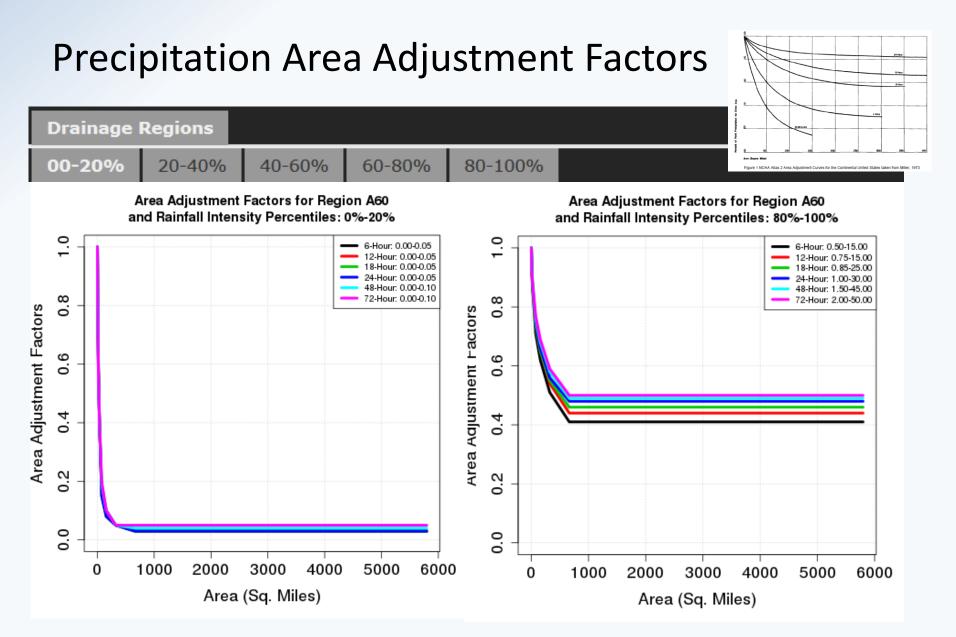
Transitioning Storms to Other Applications


- Can predictable storm characteristics be used to improve precipitation and/or water supply forecasts?
- What else can we use predictable storm characteristics for?

Historical Ensemble Predictions


Can S2S forecasts inform subsetting of hydrologic ensembles?

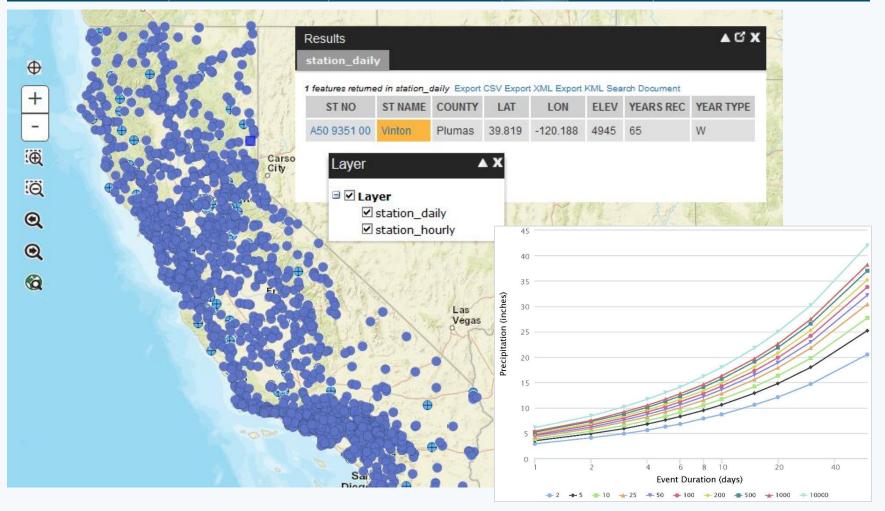
Reservoir Storage Management



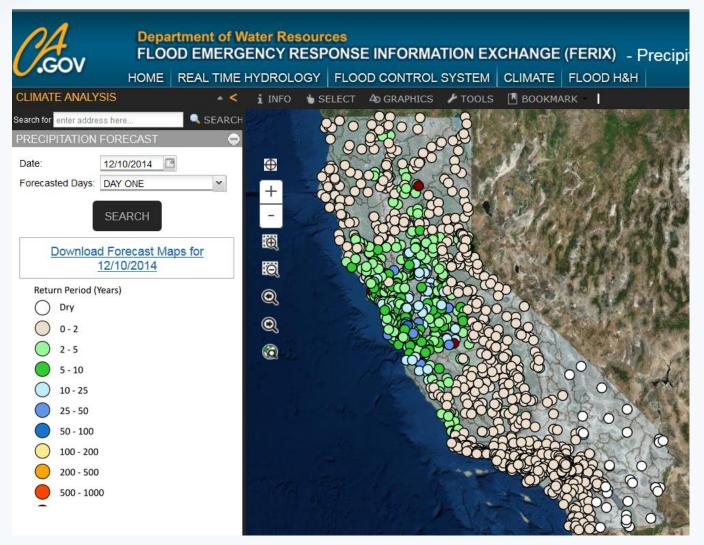
Can S2S forecasts tell us how long a given anomalous condition is likely to persist?

Reservoir Storage Forecast Maps

Could storm-based forecasts yield improved forecast storage probability maps?


Could storm-derived factors be used to interpret storm forecasts?

Bulletin 195: Precipitation Frequency Analysis


Department of Water Resources

FLOOD EMERGENCY RESPONSE INFORMATION EXCHANGE (FERIX) - Precipitation

HOME REAL TIME HYDROLOGY FLOOD CONTROL SYSTEM CLIMATE FLOOD H&H

Severity Maps for 6-Day Precipitation Forecasts

Could storm severity thresholds be predicted at sub-seasonal time scales?

CDAT: Climate Data Analysis Tool

Tool for Performing Interactive Computations and Data Updates

uency Interpola							Select Map Points Interpolation Result Table Interpolation Result Plots
Longi		Add New Point	:				Start Date: End Date:
ion List:							2010 2010
Ion List:					ſ	2 24 24	Interpolate Add Nev
						Remove Selected	TRUNCING THE AND THE A
tef. Id.		Latitude		Longit			
023		33.142		-116.84			Fresno
010		37.392		-121.5			C RESID
041		36.249		-118.8			
)97		36.160		-119.8	/1		the state of the second st
Interpolated Data eturn Period	Frquency Plo Days 8	Days 10	Days 15	Days 20	Days 30	Days 60 *	
P10	3.300	3.600	4.100	4.500	5.200	6.600	A MARTIN A MARTIN
P25	4.000	4.300	5.000	5.500	6.300	8.000	DIABUO RANGE 52521
P50	4.500	4.900	5.600	6.200	7.100	9.000	4149 ft. Lemoore 10a Visalia
P100	5.000	5.400	6.200	6.900	7.900	10.100	CA,198
P200	5.500	5.900	6.800	7.500	8.700	11.100	
P500	6.100	6.600	7.600	8.400	9.700	12.400	Coalinga Coalinga
P1000	6.600	7.100	8.200	9.100	10.500	13.300	Portervil
210000	8.100	8.800	10.100	11.200	12.900	16.500 🗸	Avenal Avenal

CAMS: Climate Application Management System

System for Executing Repetitive Operational Tasks

<u>,</u> Gov	Climate /	Applicatio	n Managen	nent System	
	Jobs	History	Processes	Resources	Users
				CREATE NEW F	PROCESS REFRESH TABLE
	Proce	ess Table	;		
	Edit	47	QPE Accumulation	Doing a running accumulation of the 6 hourly QPE data, producing 12, 18, 24, 48 hourly data	QPE and QPF data and R code
	Edit	48	AAF Calculations	Using the AAF Resource file to calculate the areal adjustment factor data	Areal Adjustment Factor Code and Data
	Edit	49	Storm Climatology Process	Storm Climatology Process creates the storm characteristics and higher level table with pngs for the Storm	Storm Climatology Operational Package

Conclusions

- Select storm characteristics are amplified or suppressed in spatially consistent patterns under the climate phases analyzed.
- The altered storm characteristics could form the basis for generating storm-based forecasts at subseasonal to seasonal time scales.
- Statistically-derived storm impact databases and applications being developed can integrate storm forecasts into existing decision processes.