Energy-Water Nexus Energy-Mater Nexus

Update on Studies in the West and Beyond

Vincent Tidwell Sandia National Laboratories

Western States Water Council 185th Council Meeting Albuquerque, NM October 19, 2017

Energy-Water Nexus

Energy and power production requires water

- Thermoelectric
 Power
- Emission Control
- Energy Minerals Extraction/Mining
- Fuel Processing (fossil fuels, H₂,biofuels)

Water production requires energy

- Pumping
- Conveyance
- Treatment
- Distribution
- Use
 Conditioning

Water for Energy

the second second

and person

Water for Energy Today

Water Withdrawal (BGD) 2010

in mining and fuel processing

Integrated Planning

- Integrate water related concerns into long-range transmission expansion planning (20 yrs.) of WECC:
 - Siting of new power plants
 - New transmission capacity

The North American Electric Reliability Corporation Regions

WSWC Western States Water Council

Methods: Scenario Development

- **Reference Case:** adopted trajectory of recent WECC planning information.
- Scenario One: favored continued trends in growing use of natural gas and renewables.
- Scenario Two: distinct shift toward renewables, energy efficiency and significant carbon tax.
- Scenario Three: reliance on traditional technologies while simply meeting current state renewable portfolio standards.
- Scenario Four: similar technology development and policies as in scenario two except limited by sluggish economic growth.

Source: WECC 2013

Methods: Capital Expansion

- Co-optimize generation and transmission additions.
- Least cost solution subject to goal related constraints:
 - Energy,
 - Policy,
 - o Environmental, and
 - Societal conditions.
- Water is one of many considerations.

Methods: Water for Thermoelectric Power

- Water withdrawal and consumption at existing power plants
- Water intensity of future thermoelectric power plants

Water Consumption for Existing Power Plants

Results: Water Supply Availability

Unappropriated Surface WaterUnappropriated GroundwaterAppropriated WaterImage: Construction of the structure of the structur

Municipal Wastewater

Brackish Groundwater

Consumptive Demand 2010-2030

Results: Water Use

Uniform reductions in withdrawals:

- Similar additions across scenarios,
- Retirements of 14% of seawater and 4 % freshwater withdrawals,
- >70% displacement of freshwater withdrawal in scenarios 2 and 4
- Consumption varies by scenario:
 - Uniform additions,
 - >30% decrease for scenarios 2 and 4 (displaced coal)
 - >30% increase for other scenarios

Consumption

Results: Generation Expansion

- Uniform mix of additions across five scenarios:
 - Natural GasCombinedCycle,
 - \circ Wind, and
 - Solar PV.
- Coal generation displaced in Scenarios 2 and 4 due to emission policies.

Results: Water Constraint

Results: Watershed Impacts

- Few instances
 where new
 demands
 exceed 10% of
 available water
 (outlined
 watersheds).
- Two scenarios free up considerable water (2 and 4).

Planning: Alternative Water

Scenario	Surface Water (%)	Groundwater (%)	Appropriated Water (%)	Wastewater (%)	Brackish Ground Water (%)
Reference Case	11	6	12	37	34
Scenario 1	16	6	10	35	33
Scenario 2	1	5	4	51	39
Scenario 3	16	7	12	31	34
Scenario 4	2	2	5	52	39

Water Supply Availability

Unappropriated Surface Water

Unappropriated Groundwater

Appropriated Water

Municipal Wastewater

Brackish Groundwater

Consumptive Demand 2010-2030

Transmission Planning in East

Current Generation at Risk

Biological Vulnerability

San Juan Basin

Four Corners Region

- Colorado River
 basin
- Snow melt dominated system
- Water Users
 - Native American
 - Irrigation
 - Multiple power
 plants and limited
 hydropower
 - Municipalities
 - Instream flows
 - Interbasin transfers

Asset-Level Energy-Water Nexus

Western Grid

- Framework that links natural and engineered systems to evaluate climate vulnerabilities and adaptive measures at the *asset level*:
 - Multiple interacting sectors,
 - Multiple forcings, and

Model Scenarios

1. Six CMIP5 global climate models using scenario RCP 8.5

2. Climate Driven Vegetation Change

3. Utilization of Settlement Waters

Navajo Indian Irrigation Project

Methods: Hydrology

- Variable Infiltration Capacity (VIC) model at 1/16th degree
- New MODIS data, including time series for each grid cell for albedo, vegetation spacing and LAI
- Downscaling using Mutivariate Adaptive Constructive Analogues (MACA) data set (Abatzaglou and Brown, 2011)

Bohn and Vivoni, 2015

to chronic temperature rise. Nature Climate Change. 2015.

Methods: Reservoir Routing

- RiverWare
- Current basin planning model
- Four reservoirs
- Twelve reaches
- Three distinct diversions
- Water budget is lumped at reach level

Simulation Object List

Sort by Name

đΧ

- M I

Shortage Sharing

• Shortage sharing used to prioritize deliveries: all share equally in times of water shortage

Average Shortage by the 2080s

Targeted Spring Flows

Days above 5000 cfs: March-July Target is 21 days per year

Days Meeting Target by 2080s

Uncertainty and Variability

- Big spread in climate model impacts as well as direction of change
- Different metrics respond differently
- Little uncertainty in effects of full utilization

Percent Change in Modeled Impacts 1980s and 2080s

Energy for Water

Energy for Water Today

Source: Green Prophet 2014

Source: Wisconsin Department of Natural Resources 2014

Water Sector Consumes 4-8% of Total U.S. Energy Consumption

Source: Circle of Blue 2015

Varies by Sector and Location

Large-Scale Conveyance

Agricultural Pumping (Groundwater) Agricultural Pumping (Surface Water)

Drinking Water (Surface Water)

Drinking Water (Groundwater)

Municipal Wastewater

Source: Tidwell et al. 2014

Demands Likely To Increase

Power Requirements For Treatment

Modified from Water Reuse 2007, EPA 2004, Mickley 2003

Source: Einfeld 2007

Existing and Proposed Western Water Supply Projects

Source: Western Resource Advocates 2010

Projected Changes to 2030

Large-Scale Conveyance

Agricultural Pumping (Groundwater)

- Projected growth of ~10%
- Heterogeneously
 distributed

Drinking Water (Surface Water)

Drinking Water (Groundwater)

Municipal Wastewater

Opportunities

Newtown Creek Wastewater Treatment Plant serving New York City

Current Electricity from Biogas

Potential for Electricity from Biogas: 2030

Acknowledgements

Kristen Averyt •

- **Robert Goldstein** •
- Chris Harto
- **Eugene Yan**
- Carey King .
- Michael Webber
- **Gerald Sehlke** •
- Jordan Macknick
- **Robin Newmark**
- Tom Iseman
- Sara Larsen
- Michael Bailey .

EPRI

- Peter Kobos
- Tom Lowry
- **Jasmine Sanchez** ۲
- **Geoff Klise**
- Len Malczynski
- **Barbie Moreland**
- **Katie Zemlick**
- Mike Hightower .

- **Richard Middleton**
- **Rick Skaggs**
- Ian Kraucunas
- Nathalie Voisin
- Mohamad Hejazi ۰
- Jessica Mullen

- Idaho National Laboratory

ELECTRIC POWER RESEARCH INSTITUTE

Vincent Tidwell Sandia National Laboratories <u>vctidwe@sandia.gov</u> (505)844-6025

http://water.sandia.gov

