Texas reservoir evaporation
Upgrading the monitoring network

Andrew Weinberg, Nelun Fernando, and John Zhu

Unless specifically noted, this presentation does not necessarily reflect official Board positions or decisions.
Texas reservoirs – over 1.2 million acres of water for recreation and water supply

- Good news:
 - *Texas reservoir capacity equals 4.4 years max water use*
Texas reservoirs – over 1.2 million acres of water for recreation and water supply

- **Good news:**
 - Texas reservoir capacity equals 4.4 years max water use

- **Bad news:**
 - factoring in evaporation losses, reservoirs only hold 2.5 years supply
 - Inflows in drought years largely go to meet in-stream flow requirements

Photo credit: Austin American Statesman
Evaporation and water availability

- WRAP model uses monthly evaporation to calculate firm yield and availability.
- If evaporation data are biased high, less water is available for uninterruptible supplies.
- If evaporation data are biased low, firm yield is too high and critical infrastructure is at risk.

Figure 2.5 Statewide 92-Quad 1954-2018 Average of Annual Evaporation (blue solid) and Annual Two-Month Maximum (green dotted) and Minimum (red dashed) Evaporation.
Current reservoir evaporation monitoring network

Class A pans
- 60 in Texas plus neighboring states
- 18 TWDB Coop sites
- 64 NWS sites
- Looking to add data from IBWC and Mexico
Issues with current monitoring program

- Limited spatial coverage
- Low temporal resolution
- Large uncertainty in monthly values
- Additional uncertainty from data aggregation

Quad 305 evaporation, 1954 - 2018
A multi-pronged approach to evaporation monitoring

Goals

- Upgrade and improve current network of Class A pans
- Directly measure open water evaporation
- Calculate evaporation from meteorological data
- Help develop remote sensing tools to monitor reservoir evaporation
A multi-pronged approach to evaporation monitoring

Strategies

1. Estimate open water evaporation using buoy stations
2. QC buoys with one floating pan evaporation station and one floating eddy covariance station
3. Upgrade Class A pan stations with automated data readings and pan refills, and supplemental meteorological measurements
4. Install new Class A pans in areas without evaporation observations, and
5. Compute evaporation from meteorological measurements at Class A pan and Texmesonet sites.
Project locations

[Map showing various locations and reservoirs with markers for project locations.]
Buoy measurement of open water evaporation

Data for combined equation potential evaporation
- Air temperature/humidity
- Wind speed/direction
- Net radiation
- Barometric pressure
- Water surface temperature
- Water column temperature
QC for open water evaporation

- Collision floating pan at Twin Buttes Reservoir
 - *Includes quarterly flux chamber measurements*
 - *Plus meteorological instrumentation*

- Eddy covariance system at rotating locations
Pan site upgrades

- Add meteorological instruments
- Automate pan level readings
- Automate pan filling
- Connect sites to internet for real-time data acquisition

Add water when the water depth in the pan drops too much

Take water out of the pan when the water depth rises too much
Calculated evaporation

- Several meteorological networks in place
- Evaluate different methods for calculation
 - CRLE
 - Penman-type
- Assess applications
 - Major reservoirs
 - Ponds and tanks
Correlation between Class A Pan and Penman-Montieth evaporation

\[y = 0.5072x + 1.7794 \]

\[R^2 = 0.4213 \]
Measured and modeled pan levels
Measured and modeled evaporation losses for rain-free periods
Pan vs Penman-Montieth evaporation

Calm winds, temperature stratification in pan

8.7 %
Field measurement challenges

- Lake system down March 2019 due to lightning strike
- Datalogger, modem, and several sensors destroyed
- Floating pan system problematic from the start
- On-going calibration issues
- Re-grouping for 2020
Questions?

For more information please contact:

Andrew Weinberg
Andrew.Weinberg@twdb.texas.gov

Nelun Fernando
Nelun.Fernando@twdb.texas.gov