Breakout Group 3

Linwood Peele
Molly Magnuson
Jack Norlund
Ginger Pugh
Tony Willardson
Mabel Jones
Cheryl Buchwald
Cheryl Deter
Forrest Melton (note taker)
1. Data Gaps / Data Challenges

- Time required to visit fields for compliance inspections where metering is required
- No reporting on water use / need better information on use of water that is diverted
- Data on baseline conditions for conservation efforts
- Water use by agriculture (especially during dry years)
- Groundwater conditions and aquifer characteristics
- Consumptive use (vs diversions) and projections for the future

WUDR / WaDE

- WUDR support has been highly valuable in supporting data migration efforts that have created opportunities to develop new applications that enhance utility and access to data
- States could use help with communicating to agricultural stakeholders about the benefits of having accurate information on water use by agriculture
2. QA/QC and Data Standards

- Key need for 2020 and beyond: Water use for oil and gas operations and well development (NM)

- Need national effort to standardize classification / categories for reporting of water use and protocols for aggregation (e.g., how to consistently report use with more detailed categories, not just commercial, residential, M&I, agricultural) → current reporting categories are highly variable from state to state
- Best practices for QA/QC of historic data
- Standards for reporting error / uncertainty for different types of water use data?
- USGS technical service center / virtual help desk to answer questions, help with best practices, and coordinate the community?
3. Water Use Reporting Systems

- Information on strengths/weaknesses and costs for different technical solutions would be helpful
- NM planning to allow water users to enter meter readings online in the near future
4. Temporal / Spatial Scales for Water Use Data

• Different state statutes require reporting at different time intervals (monthly, quarterly, annual)
• In general, the longer the reporting interval, the higher the chance of error in reporting (meter failures, etc.)
• Monthly seems like a reasonable time interval (daily is too cumbersome; annual is too long and makes it harder to catch errors; reporting can be annually, but at a monthly timestep)
• Biggest challenge for North Carolina is getting the locational information for the site-specific water use reports from agriculture
• Spatial resolution → dependent on use; in general HUC 8 is a good resolution for aggregation, but need site specific info especially for groundwater pumping and reporting for agricultural water use at the field scale

• Folks like monthly USGS webinars → productive and interesting discussions
Data Access Challenges

- Kansas, Time spent visiting fields is a challenge — is the meter an approved meter, is it installed correctly, are there any unlawful diversions
- Wyoming: No reporting on water use; different basins have used different methods to estimate water use for basin study plans; data from consultants and have also used Earth Engine; products delivered by consultants don’t provide opportunity for QA/QC → need for a long-term, iterative process
- Wyoming: state does have a water rights database, but it is not stored in a spatial database
- Wyoming: has standards for data collection and working on a master database for information on point of diversion and other water rights information
 - 30 years of data from local irrigation districts on infrastructure, conveyances, modeling of wet/dry/normal years with limited metadata and no standards
- North Carolina: Key challenge is getting access to information about agricultural water use → Dept of Ag conducts surveys, but information is aggregated
 - During a normal year there is little ag water use; but during a drought year there can be very intensive water use that is not well measured or characterized
- New Mexico: In priority basins have good info on water use; but in other basins there is less info; need better characterizations of groundwater use and aquifer characteristics and conditions; data associated with tribal water use is a key gap
- North Dakota: missing information need to determine what water is used for (e.g., cities selling water to mining operations)
- Determining baseline conditions for conservations
- Utah: Understanding consumptive use (and projected future consumptive use) vs total amount diverted
Most Important Data and Data Standards

• North Carolina: very strict QA/QC for municipal use (engineer’s will follow up to check on any changes >2%); but for other uses, such as hydropower, quality is much more variable especially during very wet/dry years
• Kansas: Have pretty strict standards for metered sites, and data is pretty accurate; Harder to QA/QC historic data
• North Dakota: Need national effort to standardize classification / categories for reporting of water use and protocols for aggregation (e.g., how to consistently report at lower level categorie, not just commercial, residential, industrial, agriculture)
• New Mexico: lot of interest in water use for oil and gas operations and well development