USGS National Land Imaging Program Update

WestFAST Webinar
24 June 2020

Timothy Newman
USGS National Land Imaging Program Coordinator
USGS National Land Imaging (NLI) Program

Satellite Operations
Develop and operate systems to acquire, produce, preserve, and deliver products and services to meet civil Earth observation research and operational requirements

– Collect, archive, process & disseminate Landsat & Landsat-like data (Landsat 1-8, S-2)
– Operate the Landsat 7 and 8 satellites, calibrate and validate the incoming data
– Develop the Landsat 9 ground system in concert with NASA for FY 2021 launch
– Collect, maintain and analyze user requirements; inform 2020 follow-on Landsat Next decision

Science, Research & Investigations
Conduct science, research and technology investigations to improve upon and develop new products and services

– Applied science & applications, including drought monitoring, global cropland estimates
– Remote sensing research and development, including unmanned aircraft systems

Manage National Civil Applications activities
– Provide National Security Space system geospatial data supporting USGS applications
– Facilitate Federal civil agency use of these systems via Civil Applications Committee

Fundamental goal: Ensure public availability of a primary data record about the current state and historical condition of the Earth’s land surface.
What is Landsat?

The singular and unique data source for analysis, modeling, and decision support for a multitude of land, water, and natural resource management actions. Its 48-year time series, the world’s longest, most widely used and cited land remote sensing data set, helps us to understand and manage natural and human-induced landscape change.

Common Uses of Landsat data by Federal Agencies, States, and the private sector:

- Agriculture and Forestry
- Regional Land Use Planning
- Land Use/Land Cover
- Fire/Disaster Management
- Energy and Mineral Mapping
- Water Quality and Resources
- Global Change Science
- Flood Management
- National Security
- Ecosystem Monitoring
- Famine Early Warning
- Carbon Assessment
- Drought Monitoring
- Transportation Planning
- Calibration/Validation

Multi-spectral coverage in VNIR-SWIR-TIR
- to map surface composition & temperature

15 / 30 / 100 meter spatial resolution
- to resolve human-scale land dynamics

16-day revisit frequency (8-days w/ two operational satellites)
- global, seasonal coverage

Broad area collection => 12,000+ square miles per image
- 1200 images/day = 15 million square miles/day

Highly calibrated “science quality” data
- to resolve long-term trends & retrieve biophysical variables

Free and Open Data policy since 2008
- 30 million products distributed by USGS last year

User Applications

- Energy and Minerals
- Ocean and Health
- Climate
- Water
- Disasters
- Ecosystems
- Ag/Forestry

VNIR: Visible Near-Infrared SWIR: Shortwave Infrared TIR: Thermal Infrared
Landsat Users and Applications

Landsat is the most widely used land remote sensing data source within Federal civil agencies

Multiple Users:
- Federal Agencies (e.g. DOI, USDA, EPA, NASA, DOD, NOAA, State, USAID)
- State Agencies (Planning, Natural Resources, Transportation)
- University Researchers
- International Organizations
- Non Governmental Organizations (e.g., The Nature Conservancy, World Resources Institute, World Wildlife Fund, Resources for the Future)
- Commercial (e.g., Exxon-Mobil, MapBox, Descartes Labs, Esri, Gallo, Harris Corp, ITT, MDA Federal)
- Foreign space agencies and U.S. and foreign commercial operators
- Cloud Service Providers (e.g. Amazon Web Services, Google)
- General Public

Multiple Applications:
- Land use, land cover change
- Agriculture monitoring and forecasting
- Water resource management, availability, quality, usage
- Forest health, forest productivity, wildfire mapping and remediation
- Crop type mapping, yield estimation, efficacy of nutrients and pesticides
- Vegetation dynamics, ecosystem services, rangeland condition
- Land resource management
- Energy exploration and production
- Geologic mapping and mineral resource assessment
- Hazards monitoring and mitigation
- Emergency response, disaster assessment, risk mitigation
- Natural resource inventorying and monitoring
- Recreational planning & site suitability analysis
- Urban planning and development

Major Operational Programs:
- USDA National Agricultural Statistics Service Crop Type Mapping
- USDA Foreign Agricultural Service Commodity Forecasting
- USDA Risk Management Agency (Crop Insurance)
- USGS/EPA National Land Cover Dataset (NLCD)
- DOI/USDA LANDFIRE Program
- Western States Consumptive Water Use
- NOAA Coastal Change Analysis Program
- Global Forest Watch Forest Change Products

Reference for Instrument Calibration and Base Data Layer for More Advanced Products
“Landsat imagery provided domestic and international users an estimated $3.45 billion in benefits in 2017 compared to $2.19 billion in 2011, with U.S. users accounting for $2.06 billion of those benefits.”

(Does not include value of scenes downloaded by cloud vendors or other downstream economic benefits such as value-added products)
Landsat Operations and Development Status

Landsat 7 Flight Operations (1999-)
- Collecting about 470 new scenes per day; latest fuel estimate projects operations into 2021.

Landsat 8 Flight Operations (2013-)
- Collecting up to 740 new scenes per day; frequent night and off-nadir imaging of volcano and fire imaging.

Landsat Archive Operations
- Over 8 million Landsat scenes available; many other datasets: ResourceSat-2 over US, Sentinel-2, Commercial satellite data, aerial photography, Unmanned aircraft system data.

Landsat 9 (Launch in 2021)
- Essentially a copy of Landsat 8, but with important improvements for accuracy and resiliency (upgrade to fully Risk Class B); 14-bit data.

Landsat Next (~late 2020s launch)
- Technology and user needs studies over the past year led to an architecture study; team delivered report in January.
- NASA and DOI/USGS working together to agreed to a multi-component architecture; details to be announced with FY22 Budget.
Sustainable Land Imaging (SLI) is a partnership between DOI/USGS and NASA to maintain a sustainable program for spaceborne land imaging

- Landsat-9 development is on track to meet a FY 2021 launch date
- USGS documented user requirements across Federal agencies; NASA conducted technology investigations to reduce cost and risk in future missions
- Joint SLI Architecture Study Team (AST) completed its final report; AST delivered a set of viable architecture concepts for the next mission providing a basis for formulating future acquisition strategies
 - NASA and USGS Leadership working to develop details and options as part of their FY 2022 budget requests
Landsat Science Products

- Relieve the burden of post-processing from the data users
- Help facilitate time-series analysis and land change studies
- Each level of products are tracked to the original data

Level -1
Digital Numbers

Level - 2
- TOA Reflectance
- TOA Brightness Temp.
- Surface Reflectance
- Surface Temperature
- Spectral Indices
- Provisional Aquatic Reflectance

Level - 3
- Fractional Snow Covered Area
- Burned Area
- Dynamic Surface Water Extent
- Provisional Evapotranspiration
Landsat Surface Temperature

Goal: Enable monitoring of Earth surface temperature from space at 30m resolution from 1982 to the present. Used for energy balance, hydrological modeling, crop and vegetation health, extreme heat events, natural disasters and urban heat island effects.

- Available for the US, and Globally in summer 2020 (Landsat Collection 2)

Data Access
- U.S. Landsat Analysis Ready Data via earthexplorer.usgs.gov
- Scene-based globally via earthexplorer.usgs.gov (summer 2020)
- Product web page

U.S. and globally available through earthexplorer.usgs.gov.
Goal: Landsat 8 Provisional Aquatic Reflectance provides the foundational input to map optically active components of the upper water column in inland and near-shore waters. The moderate resolution (30m) offers the capability to map and monitor water constituents in coastal/inland water bodies and in marine/freshwater ecosystems, such as harmful algal blooms (HAB).

- Provisional Aquatic Reflectance for the conterminous U.S.
 - Landsat 8 (2013 - present)
- On-demand, scene-based via EROS Science Processing Architecture (ESPA)
 - espa.cr.usgs.gov/
 - Product web page
Goal: Landsat Fractional Snow Covered Area (fSCA) products provide per-pixel fractional snow cover maps at the spatial resolution needed to resolve snow cover patterns across the Western U.S. Snow cover is crucial for Western States water supply and resources management.

- Available across Western U.S. at 30m from 1984 to present and monthly/annual fractional composite products will be available in summer 2020.

- Data Access
 - earthexplorer.usgs.gov
 - Product web page

Goal: Enable monitoring of surface water from Landsat imagery at spatial and temporal resolutions useful for climate, hydrology and biologic science as well as land/water resource management.

- Available for the US
- Data Access:
 - earthexplorer.usgs.gov
 - Product web page
Landsat Actual Evapotranspiration Science Product

- A provisional Landsat-derived Actual Evapotranspiration science product for the U.S. will be available in summer 2020.
- Example here captures cropland ET and water use.
LCMAP

Land Change Monitoring Assessment and Projection

- **Monitoring**: Continuous tracking of land surface change using Landsat Analysis Ready Data
- **Assessment**: Summarizing landscape change, its causes, and consequences
- **Projection**: Modeling past and future landscapes and facilitating applications

- Map Land Cover at any point across the full Landsat record
- Understand and explain historical change to better anticipate future land change to inform decision makers

Expansion of urban and agriculture classes, Richland Washington
LCMAP Products: Descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Surface Change Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time of Spectral Change (SCTIME)</td>
<td>The day that a spectral change was detected for a given year</td>
<td>Provides data indicating location and timing of spectral breaks</td>
</tr>
<tr>
<td>Change Magnitude (SCMAG)</td>
<td>A measure of the spectral magnitude of the change found within a given year</td>
<td>Higher values may be indicative of different types of changes</td>
</tr>
<tr>
<td>Time Since Last Change (SCLAST)</td>
<td>The cumulative number of days since the last spectral change occurred as of July 1st of the given year</td>
<td>Provides an indicator of how long a location has been in its current state</td>
</tr>
<tr>
<td>Spectral Stability Period (SCSTAB)</td>
<td>A measure of the amount of time in days that a pixel has been spectrally stable</td>
<td>Provides information of the frequency of land surface change</td>
</tr>
<tr>
<td>Model Quality (SCMQA)</td>
<td>Characterization of time series model quality as it relates to model input data and model fit</td>
<td>Provides a spatial measure for interpreting LCMAP product results</td>
</tr>
<tr>
<td>Land Cover Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Land Cover (LCPRI)</td>
<td>Land cover classification consisting of eight general land cover types</td>
<td>Classes: Developed, Cropland, Tree Cover, Grass/shrub, Wetland, Water, Ice/Snow, Barren</td>
</tr>
<tr>
<td>Secondary Land Cover (LCSEC)</td>
<td>Land cover classification consisting of eight general land cover types</td>
<td>Alternative cover class with the 2nd highest algorithmic probability, same as primary LC classes</td>
</tr>
<tr>
<td>Primary Land Cover Confidence (LCPCONF)</td>
<td>A measure of confidence in the primary land cover class designation</td>
<td>Measure from 0 to 100; higher values imply higher levels of confidence</td>
</tr>
<tr>
<td>Secondary Land Cover Confidence (LCSCONF)</td>
<td>A measure of confidence in the secondary land cover class designation</td>
<td>Measure from 0 to 100; higher values imply higher levels of confidence</td>
</tr>
<tr>
<td>Annual Land Cover Change (LCACHG)</td>
<td>Indictor of thematic land cover change that has occurred from the prior year to the current year (in other words, From:To land cover)</td>
<td>Categories that indicate two land cover states, the prior year land cover and the current year land cover</td>
</tr>
</tbody>
</table>
Harmonized Landsat Sentinel-2 (HLS)

• Merging Sentinel-2 and Landsat 8 data streams can provide ~3 day global coverage
• Goal is “seamless” near-daily 30m surface reflectance record including atmospheric corrections, spectral and BRDF adjustments, re-gridding
• Processing migrated to Amazon Web Services (AWS) via NASA Earth Science Technology Office (ESTO)
• Landsat-8 data set: 1,100k products From Mar-2013 to Present (135 TB); Sentinel-2 data set: 420k products From Jun-2015 to Present (60 + 274 TB)
• Prototype for a multi-sensor Analysis Ready Data product

S2A+S2B+L8 mean cloud-free revisit period (days)
Goal: Improving monitoring of vegetation drought stress, phenological cycles and irrigated agriculture. Contribute to answering the questions “What are interrelations among climate, land cover, land use and water resources?” and “How does the relative strength of different drivers and controls on vegetation condition and water resources vary across time and space?”
Every Western State uses Landsat’s unique thermal capability for managing consumptive water use and facilitating water rights transfers and agreements.

Landsat is used to detect and address harmful algal blooms in lakes and coastal waters.

A hazardous algal bloom containing the toxin *microcystis* covered large portions of western Lake Erie in September 2017. Swirls of algae can be seen south of the Detroit River’s mouth in this natural-color Landsat 8 image. Credit: USGS EROS

Idaho’s Mapping Evapotranspiration application is a former winner of the Harvard University John F. Kennedy School of Government’s Innovations in American Government Award
Landsat and Vegetation and Fire-Fuels Mapping (DOI/USDA)

The Monitoring Trends in Burn Severity program uses Landsat to map burn severity, extent, and trends.

The Burned Area Emergency Response program equips ground teams with Landsat-based burn severity maps immediately following fires to aid in remediation efforts.

LANDFIRE uses Landsat to provide a common "all-lands" set of vegetation and wildland fire/fuels information, for strategic fire and resource management planning and analysis via 20+ national geospatial layers, databases, and eco-models.
Monitor and Forecast Global Crops Using Landsat Data

- Global crop mapping, monitoring, assessments, and forecasting.
- Use analysis-ready calibrated Landsat data for global crop analysis, supporting field-to-country assessments, and reducing more than 80 percent of the imagery data volume.

Landsat imagery coverage for global crop areas

Analysis-ready Landsat data for the US

Crop map of the US

https://landsat.usgs.gov/landsat-in-action
Invasive Species Mapping

- Invasive grasses such as cheatgrass contribute to ecosystem degradation and increased fire intensity in the Western United States.
- Landsat data, combined with Europe’s Sentinel-2 data can provide 2-3x/week observation frequency for Western state land managers’ early detection and rapid response.

Mapping invasive grass cover using Harmonized Landsat and Sentinel-2 data

Expanding mapping effort to all Western U.S. using the USGS Denali Tallgrass High Performance Computing capability and the Landsat archive
National Land Imaging Future Directions

Leveraging the diversity of Earth Observations to meet the Diverse Needs of Science & Operational Users

- Improve Operational Capabilities
- Enhance Research, Development and Innovation
- Expand Product and Service Usability
- Ensure Community Engagement

Landsat Next
- Cross-Calibration of sensors
- Hyperspectral Technology Investigations
- International & Commercial Partnerships

Landsat 9
- Sentinel/Landsat Ops & Data Harmonization
- Investigate new science and technologies

National Security Space Data & Services
- Land Change Monitoring Assessment and Projection / EarthMAP
- Analysis Ready Data

Thoroughly understand user needs and capabilities available to meet them

Landsat 8 Flight & Ground Operations

Increasing User Satisfaction